Курсовая работа: Расчет аппарата воздушного охлаждения

В связи с тем, что электроснабжение сезонного характера не имеет, а избытки выработанной электроэнергии всегда могут быть переданы в общую электросеть, это значительно облегчает круглогодичное использование отработавшего пара и делает весьма перспективными комбинированные установки для теплоснабжения и выработки электроэнергии.

По схеме комбинированного использования тепловой потребитель включается на линии между пароочистителем и турбиной. В теплоутилизационной установке (рис. 1.5) пар из парогенератора 1 поступает на производственный агрегат 3, на турбину двойного давления 12 и паровой привод питательного насоса 10. Летом отработавший пар используется в основном в турбине 12 для производства электроэнергии, зимой в теплообменнике 7 для подогрева сетевой воды.

Рис. 1.5 - Схема теплоутилизационной установки для выработки теплоэнергии и теплоснабжения:

1 — парогенератор; 2— промежуточный пароперегреватель; 3 — производственный агрегат; 4— пароочиститель; 5— тепловой аккумулятор; 6— потребители тепла; 7— теплообменник; 8— бак питательной воды; 9— химводоочистка; 10— питательный насос; 11— конденсатор; 12— турбина двойного давления

Схема дает возможность свободно перераспределять потоки отработавшего пара между электрогенерирующей установкой и тепловыми потребителями.


Рис. 1.6 - Схема комплексного использования тепла отработавшего пара летом и зимой:

1 — пароочиститель; 2 — производственный агрегат; 3 — парогенератор; 4— теплофикационная турбина; 5— потребитель электроэнергии; 6— потребитель тепла; 7— потребитель холода; 8 — конденсатор; 9 — теплообменник; 10 — абсорбционная холодильная установка; 11 — бак ниппельной воды; 12 — питательный насос

Получение холода. Потребности промышленности в холоде непрерывно возрастают. Крупными потребителями холода являются заводы химической, металлургической, пищевой и других отраслей промышленности. Холод все больше применяется в технологических процессах, для кондиционирования воздуха, получения искусственного льда, а также для процессов, связанных с низкими температурами.

Подавляющее большинство предприятий оснащено в настоящее время компрессионными холодильными машинами. Эти машины сложны и дороги, а главное — для производства холода затрачивают очень много электрической энергии. Электрическую энергию могут заменить тепловые отходы, имеющиеся в избытке почти на каждом химическом, металлургическом, нефтехимическом предприятии, т. е. как раз в тех отраслях производства, которые являются основными потребителями холода. Холод за счет тепловых отходов получают в абсорбционных холодильных машинах. Перспективным является также использование для этих целей сезонных излишков тепла ТЭЦ.

Абсорбционные холодильные машины могут устанавливаться как самостоятельные автономные установки, так и в сочетании с установками теплоснабжения и выработки электроэнергии. Применение автономных холодильных установок может быть оправданно лишь тогда, когда холодоснабжение осуществляется круглогодично. Поскольку в большинстве случаев холодоснабжение носит сезонный (летний) характер, то более рационально осуществлять комплексное использование тепла отработавшего пара (рис. 1.6). Отработавший пар от производственного агрегата 2 после пароочистителя 1 направляется в магистраль, в которую поступает также пар из промышленного отбора теплофикационной турбины 4. Из этой магистрали в летний период пар поступает в абсорбционную холодильную установку 10, снабжающую холодом потребителя 7. В зимний период включается в работу теплообменник 9 для снабжения теплом потребителя 6.

Преимуществом данной схемы является возможность эффективного круглогодичного использования отработавшего пара, а также круглогодичная работа турбины но теплофикационному циклу.

1.2 Принципиальные схемы использования теплоты производственной воды

Вода широко применяется для охлаждения конструктивных элементов огнетехнических установок, а также в производственных процессах, протекающих при низких температурах, для искусственного охлаждения технологического продукта или аппаратуры. Примерами могут служить: водяное охлаждение металлургических печей, печей химических производств; охлаждения горячей серной кислоты после контактного аппарата или конденсатора; охлаждение водой различных нефтепродуктов; охлаждение конденсаторов паровых турбин, масло- и воздухоохладителей генераторов на электростанциях, конденсаторов смешивающего типа выпарных батарей алюминиевых растворов на глиноземных заводах; охлаждение рубашек цилиндров двигателей внутреннего сгорания и т.д.

Конечная температура охлаждающей воды колеблется в интервале 293—363 К, не превышая в большинстве случаев 232—433 К.

Нагретую производственную воду можно использовать для теплоснабжения и горячего водоснабжения, агротеплофикации и для выработки электроэнергии.

Теплоснабжение. Использование нагретой производственной воды для теплоснабжения часто затруднено из-за сезонного характера отопительной нагрузки. График потребления такой воды можно несколько выровнять, внедряя горячее водоснабжение. Большие избытки неиспользованной нагретой воды, особенно в летний период, рационально утилизировать в абсорбционно-холодильных установках.

Возможным вариантом использования производственной воды для теплоснабжения является нагревание вентиляционного воздуха, поступающего в производственные помещения. Интересны комбинированные схемы, предусматривающие одновременное использование охлаждающей воды и какого-либо другого вида ВЭР, например использование тепла горячего воздуха из колчеданных печей и тепла охлаждающей воды из сернокислотных холодильников. По этой схеме (рис. 1.7) горячий воздух из валов колчеданных печей 1 с температурой 473 К используют в первой зоне теплообменника 2 для нагрева воды на нужды централизованного теплоснабжения комбината и жилого поселка. Температура горячего воздуха после теплообменников составляет 343 К. Охлаждающую воду из сернокислотных холодильников используют для восполнения утечек из тепловых сетей и покрытия нагрузок горячего водоснабжения поселка и комбината. Воду для охлаждения кислоты подают из реки в холодильники 3, в которых она нагревается до 313 К. Затем отправляют в промежуточный сборный бак 4, откуда насосом перекачивают к водоподготовительной установке 5. После очистки от механических приме сей устранения временной жесткости и деаэрации подпиточную воду подают в теплообменник 2, где она подогревается до 335 К. Подпиточную и обратную воду после смешения подают насосом во вторую зону теплообменника 2, где она подогревается до 355 К и поступает в тепловые сети.

Рис. 1.7 - Комбинированная схема использования тепла горячего воздуха охлаждающей воды

Рис. 1.8 - Принципиальные схемы использования физического тепла нагретой производственной воды для выработки электроэнергии

В рассмотренной схеме надежно обеспечено требуемое охлаждение кислоты до 308—313 К, так как режим работы сернокислотных холодильников не зависит от температурного графика регулирования тепловых сетей. В летнее время установка работает с использованием тепла только от холодильников кислоты для горячего водоснабжения.

Выработка электроэнергии. Значительные количества нагретой производственной воды на промышленных предприятиях не всегда можно использовать для теплоснабжения в связи с ограниченной потребностью в тепле и сезонным характером теплоснабжения. Иногда эффективно применять этот вид ВЭР для выработки электроэнергии.

Возможная доля годового выхода тепла нагретой воды для выработки электроэнергии почти всегда выше, чем при направлении его в систему теплоснабжения. Особенно эффективны электроэнергетические методы использования горячей воды в комплексе с другими энергоресурсами в условиях энергоснабжения промышленных предприятий по комбинированной схеме.

Рассмотрим две схемы использования нагретой воды с замкнутой циркуляцией теплоносителя (рис. 1.8). Нагретая вода от производственных охлаждаемых установок 1 поступает в испаритель 2. В испарителе поддерживается давление ниже давления насыщения при температуре теплоносителя. Благодаря этому часть воды испаряется, и полученный насыщенный пар поступает по схеме а в первую ступень конденсационной турбины 3. Сконденсированный в конденсаторе 4 пар и оставшаяся после испарения вода насосами 5 подаются снова на производственные охлаждаемые установки. Этими установками могут быть агрегаты, имеющие систему охлаждения конструктивных элементов, а также оборудование для охлаждения производственных отходов и технологической продукции. Для сооружения установки по схеме а требуется специальная утилизационная турбина низкого давления с соответственным комплексом сооружений систем водоснабжения, электрического оборудования, зданий и прочих устройств, а также персонал для обслуживания турбоагрегатов и связанных с ним вспомогательных устройств. Более простыми в сооружении, с минимальными капитальными затратами и эксплуатационными расходами являются установки, выполненные по схеме б. В этом случае предполагается размещение испарителей непосредственно на заводской ТЭЦ и подача вторичного пара в часть низкого давления теплофикационной турбины с промежуточным впуском пара 6 [1].


2. Расчет теплообменника

2.1 Тепловая нагрузка холодильника

К-во Просмотров: 937
Бесплатно скачать Курсовая работа: Расчет аппарата воздушного охлаждения