Курсовая работа: Расчет вращающейся печи для изготовления керамзита

Керамзит применяется в качестве заполнителя для изготовления несущих строительных конструкций из бетона и железобетона, на теплоизоляционные засыпки и на прочие цели.


1. Технологическая часть

1.1 Сырьевые материалы для производства керамзитового гравия

Практика производства показывает, что для изготовления керамзита наиболее пригодны легкоплавкие глинистые породы, характеризующиеся способностью вспучиваться при обжиге с учетом вводимых добавок и образовывать материалы ячеистой структуры: глина, аргиллит и глинистый, в том числе шунгитсодержащий, сланец и в первую очередь глинистые породы морского. Озерного и озерно-болотного происхождения с преимущественным содержанием глинистых минералов группы монтмориллонита, иллита, хлорита. Глинистые породы должны отвечать следующим основным требованиям:

- Вспучиваться при температуре ниже 1250 0 С при интервале вспучивания не менее 50 0 С;

- Содержать не более 30% песчаных и пылеватых частиц. А отдельные окислы в следующих пределах: SiO2 – 50-55%, Al2 O3 – 15-25%, CaO – до 3%, MgO – до 4%, Fe2 O3 +FeO – 6,5 – 10%, Na2 O+K2 O – 3,5-5%;

- Не содержать частиц карбонатов кальция и магния крупнее 0,2мм и гипса;

- Содержать тонкодисперсные органические примеси в пределах 1-2%, однако в некоторых случаях недостаток их может быть восполнен соответствующими добавками (нефтяные продукты и отходы).

Различаясь в условиях ускоренной термической обработки, легкоплавкие глинистые породы вспучиваются за счет давления изнутри газообразных продуктов, выделяющихся в обжигаемой глинистой массе, и образуют стекловидный материал с ячеистой структурой, состоящий из стекловидной и кристаллической фаз.


1.2 Процессы, происходящие при сушке

А. Значение процесса сушки

Сушкой называется процесс удаления влаги из материалов путём её испарения с последующим удалением образовавшихся паров в окружающую среду.

Процесс сушки возможен лишь в том случае, если парциальное давление водяных паров у поверхности высушиваемого материала больше парциального давления водяных паров окружающей среды, т.е. Рм > Рос .

Давление водяного пара в высушиваемом материале зависит от влажности материала, температуры и характера связи влаги с материалом. С увеличением влажности и температуры материала Рм возрастает, а с усилением связи влаги с материалом Рм уменьшается.

Для испарения влаги из материала необходим подвод определённого количества тепла, равный теоретическому расходу на испарение и на компенсацию тепловых потерь, величина которых зависит от способа сушки, конструкции сушилки, формы связи влаги с материалом.

Сушка материалов и изделий может быть естественной и искусственной. Естественная сушка протекает на открытом воздухе, при этом сушильным агентом является атмосферный воздух. Искусственная сушка производится нагретым воздухом или дымовыми газами в сушилках. Тепло к высушиваемому материалу в сушилках может подводиться тремя методами передачи тепла:

●конвекцией – путём омывания материала горячим воздухом или дымовыми газами;

●теплопроводностью – за счёт соприкосновения материала с нагретыми поверхностями сушилки;

●излучением - за счёт облучения материала инфракрасными лучами от электрических или газовых нагревателей.

Режимом сушки называются параметры сушильного агента по времени процесса: температура, относительная влажность и скорость его прохождения около материала. От правильного выбора режима зависят качество и экономичность сушки. Например, для песка быстрая сушка дымовыми газами при начальных температурах 700…900о С вполне допустима, а для керамических изделий сложного профиля, изготовленных из высокочувствительных глин, требуется замедленный процесс при начальных температурах не выше 50о С. При этом во избежание запаривания необходимо быстро удалять с поверхности изделия испаренную влагу, что обеспечивается их обдуванием относительно сухим влагоносителем – воздухом или дымовыми газами.

Б. Связь влаги с материалом

Все материалы, подвергаемые тепловой обработке при производстве строительных изделий, представляют собой неоднородные (гетерогенные) системы, в которых совмещены три фазы агрегатного состояния. Твёрдая фаза – скелет материала, жидкая - влага и газообразная - воздух, пары воды и газы. Твёрдая фаза материала за счёт свободной поверхностной энергии обладает большой адсорбционной способностью поглощать влагу. Эта влага связывается материалом и может им удерживаться.

Влажные материалы в зависимости от их свойств делят на три вида. Первый вид называют коллоидными телами. Они характеризуются эластичными свойствами, сохраняющимися даже при удалении влаги. Это тела типа желатинов – в строительной индустрии практически не применяются. Второй вид представлен капиллярно – пористыми телами, при удалении влаги из них они приобретают хрупкость и могут быть превращены в порошок (кварцевый песок). Третий вид называют капиллярно- пористыми коллоидными телами. При увлажнении они увеличиваются в размерах - набухают. Удаление влаги из таких тел сопровождается усадкой. Причём, удаление влаги связано с нарушением связи влаги с материалом, и на это нарушение необходимо затрачивать определённую энергию.

Именно энергия нарушения связи влаги с материалом была положена академиком А.П. Ребиндером в классификацию форм связи по энергетическому принципу. По этой классификации все формы связи делятся на три группы. К первой группе относят химическую связь влаги с материалом. Вторая представлена физико-химической связью и третья физико-механической связью.

Химическая связь наиболее прочная, поскольку содержащаяся в материале влага является кристаллизационной, которая входит в состав кристаллической решётки материала. Она содержится в строго определённых количественных соотношениях. Такая влага удаляется из материала только при разрушении кристаллической решётки материала при высоких температурах, а именно прокаливании или обжиге. Поглощение материалом жидкости, которая химически связана с материалом, сопровождается контракцией (сжатием, стягиванием) системы. Сущность этого явления объясняется тем, что тело, поглощая жидкость, хотя и увеличивается в размерах, но объём набухшего тела меньше суммы первоначальных объёмов тела и поглощённой влаги. Явление контракции проявляется при затворении небольшим количеством воды цемента, гипса, глины. При введении большего количества воды явление контракции не исчезает, но становится менее заметным. Влага, связанная с материалом физико-химическим способом делится на адсорбционно связанную и осмотически связанную. Под адсорбционно - связанной понимают такую влагу, которая адсорбирована на внешней поверхности под действием силового поля коллоидных частиц – мицелл. Эта влага с поверхности мицелл может частично проникать внутрь мицеллы и образовывать в ней интрамицеллярный слой.

Осмотически связанной называют такую влагу, которая проникает в скелет коллоидного тела путём диффузии за счёт сил осмотического давления. Эту влагу ещё называют влагой набухания. Для разрушения адсорбционных и осмотических связей также нужна большая энергия, однако она значительно меньше, чем для разрыва химических связей. Такая влага может удаляться при температурах не превышающих 100о С.

При физико-механической форме связи влага удерживается в микро – и макрокапиллярах (открытых порах) материала за счёт капиллярного давления и поверхностного натяжения. К макрокапиллярам относятся капилляры, которые имеют радиус более 10–5 см. Эти капилляры не собирают влагу из воздуха, а заполняются ею только при непосредственном соприкосновении. Микрокапилляры с радиусом менее 10–5 см при действии сил капиллярного давления могут заполняться влагой за счёт её сорбции из воздуха, а также при её конденсации на поверхности материала. Влага смачивания связывается с материалом только при прямом соприкосновении. Эта связь самая непрочная и нарушается даже при воздушном хранении материала из-за разности парциальных давлений водяного пара на поверхности материала и в окружающей среде. При производстве строительных изделий применяют термины «свободная влага» и «связанная влага». Под свободной влагой понимают влагу, удаляемую из материала до равновесного состояния с окружающей средой, т.е. до равенства парциальных давлений водяного пара на поверхности материала и в окружающей среде. Связанная влага это адсорбционная, осмотическая и заполняющая микрокапилляры. Материал, хранящийся на воздухе, по своему влагосодержанию находится в неустойчивом равновесии. При увеличении влагосодержания в атмосфере он набирает влагу, а при снижении – отдаёт.

В. Состояние материала в процессе сушки

В процессе сушки из материала удаляют физико-механическую и физико-химическую влагу, связанную с ним. Следовательно, при сушке нарушаются только связи смачивания, капиллярные, структурные, осмотические и адсорбционные.

К-во Просмотров: 292
Бесплатно скачать Курсовая работа: Расчет вращающейся печи для изготовления керамзита