Курсовая работа: Разработка радиоприемника
4 июля 1943 г. вышло Постановление Государственного Комитета Обороны (ГКО) об учреждении при нем Совета по радиолокации. Практическое
руководство повседневной деятельностью Совета осуществлял Аксель Иванович Берг (впоследствии – академик), а отвественным секретарем Совета был Александр Александрович Турчанин.
В 1943 г. по инициативе Совета по радиолокации был создан Институт локационной техники, который возглавил П.З. Стась. Главным инженером стал профессор А.М. Кугушев.
В июне 1947 г. Совет по радиолокации был преобразован в Комитет по радиолокации при СHК СССР и его председателем стал М.З. Сабуров.
Загоризонтная радиолокация базируется на открытии в 1947 г. советским ученым H.И. Кабановым явления дальнего рассеянного отражения от Земли декаметровых волн (с их возвратом после отражения от ионосферы к источнику излучения).
Hеоценимый вклад в создание и разработку советской радиолокационной техники также внесли: В.Д. Калмыков, А.И. Шокин (в течении ряда лет был министром электронной промышленности СССР), А.Н. Щукин и мн. др.
После окончания Второй мировой войны начался этап активной разработки планетной радиолокации и первыми ее объектами стали Луна и метеоры. Первые эхо-сигналы от солнечной короны были получены в 1959 г. (США), а от Венеры – в 1961 г. (Великобритания, СССР и США). В СССР радиолокацию Венеры, Меркурия, Марса и Юпитера выполнил в 1961–1963 гг. коллектив ученых во главе с В.А. Котельниковым.
Большой вклад в развитие отечественной оптической локации внесли ученые: Н.Г. Басов, Ф.М. Прохоров, А.Л. Микаэлян и др.
1. Принцип действия детектора АМС
Амплитудным детектором (АД) называется устройство, предназначенное для получения на выходе напряжения, изменяющегося в соответствии с законом модуляции амплитуды входного гармонического сигнала. Процесс детектирования амплитудно-модулированных (АМ) сигналов вида
uc (t ) =ua (t ) cos(ωc t )
Схема амплитудного диодного детектора изображена на рис. 1. На вход детектора поступает высокочастотный сигнал u c (t ). Детектор представляет собой последовательное соединение диода VD и нагрузочной цепи (фильтра): конденсатора Сн и резистора Rн , включенных параллельно. С нагрузочной цепи снимается выходное колебание u вых (t ).
Значение тока через диод ig для режима покоя (uc (t )=0) может быть найдено из уравнений:
(5)
где U g – напряжение на диоде VD (рис. 1).
Первое уравнение является уравнением вольтамперной характеристики (ВАХ) диода как безынерционного нелинейного элемента. Из-за нелинейного характера ВАХ, форма тока через диод ig при синусоидальной форме сигнала uc (t ) не является синусоидальной.
В составе тока появляется постоянная составляющая, которая, протекая по резистору Rн , создает падение напряжения U = , смещающая положение рабочей точки. При увеличении амплитуды входного напряжения смещение рабочей точки увеличивается, и ток через диод будет приближаться по форме к однополярным импульсам, открывающим диод при положительных значениях входного напряжения.
|
Тогда постоянные составляющие напряжений U = (1) <U = (2) и I = (1) <I = (2) .
На этом же рисунке условно изображена зависимость i g =f (t ).
Вольтамперная характеристика диода в широком диапазоне токов достаточно точно аппроксимируется экспоненциальной зависимостью:
, (6)
где I об – абсолютное значение величины обратного тока диода, φ T – температурный потенциал, равный при Т =293˚ K примерно 26 мВ.
Зависимость постоянной составляющей U = от амплитуды приложенного напряжения U c дается детекторной характеристикой (рис. 3).
Анализ выражения (6) позволяет сделать два основных вывода:
· с увеличением Rн возрастает крутизна детекторной характеристики,
· с увеличением уровня сигнала снижается степень нелинейности детекторной характеристики, и наоборот, детектирование «слабых» сигналов сопровождается значительными нелинейными искажениями закона модуляции.
В этой связи различают два режима работы диодного амплитудного детектора:
· детектирование «слабых» сигналов,
· детектирование «сильных» сигналов.