Курсовая работа: Сохранение биоразнообразия и биологической продуктивности биосферы
Гипотеза 3.8: Богатство видов любой области - результат баланса притока (иммиграцией и местным видообразованиием) и оттока видов (эмиграцией и вымиранием).
Это подразумевает, что нет никаких теоретических верхних пределов числу видов в экосистеме. Поступление и исчезновение видов нелинейны во времени.
Для понимания видового богатства на любом участке, должны быть поняты процессы иммиграции, видообразования, эмиграции и вымирания, приток и отток видов, причем они имеет не обязательно независимые функции. Наблюдения явно показывают, что различные экосистемы обладают различными уровнями богатства видов. Не ясно, вытекают ли эти различия из-за некоторого характерного несходства в емкости экосистем, или они являются следствием вариаций в скоростях поступления и исчезновения.
Гипотеза 3.9: Экосистемы проявляют уровень БР на несколько порядков величины выше, чем это требуемо для эффективной трофической функции. Эта гипотеза является критической для объективной оценки экологической роли БР. Если есть большая функциональная избыточность из-за длинной истории естественного возмущения и ландшафтной фрагментации, то нет никакой непосредственной опасности для целостности экосистемы от антропогенной деятельности, снижающей БР до определенного уровня, если опасность не затрагивает доминантов-эдификаторов. Но если каждый вид уникален и выполняет исключительную функцию, не разделенную другими, то человек вызывает нарушение, могущее иметь бедственные последствия.
Справедливость этой гипотезы подвергнута сомнению. Полный критический обзор этого тезиса необходим. Он должен иметь высокий приоритет в любой программе по БР.
На серию методологических гипотез исторически параллельно формируется другое направление методологических решений (ответов), не адекватных первой, а скорее, глубже раскрывающих суть проблем, так как выражают результаты более широких и глубоких выводов. Наиболее полно оно выражено в фундаментальной сводке – квинтэссенции массива эмпирических обобщений: от данных полевой и экспериментальной экологии до палеонтологических выводов по широкому спектру таксонов, практически по всем материкам и океанам. В рамках статьи приведем лишь верхушку айсберга как призмы фундаментальных закономерностей, сквозь которую необходимо рассмотреть и специфику биоразнообразия горных лесных экосистем.
Прежде всего, в работе вскрывается «ошеломляющее видовое разнообразие в истребляемых человеком тропических лесах мира», обреченное на гибель, так и не будучи выявленных консументов (подавляющее число - членистоногие - 40-100 млн. видов). По сути, в сводке реализованы цели глобальной стратегии охраны природных уникумов на основе выявления концентрации таксономического и экосистемного разнообразия, возникшего на основе ландшафтно-географического многообразия. Выдвинута задача определения первостепенных целей спасения биоразнообразия, к которым по праву относятся очаги наиболее богатых формами жизни и наиболее древних его рефугиумов.
Как наиболее населенные, они становятся самыми горячими точками гибели биоты и разрушения ландшафта. Особенно четко это просматривается на карте состояния БР экосистем Средиземноморского побережья.
Наиболее известный образец формализации БР - кривая: виды-площадь (прямая в "1оg-1оg пространстве") на самом деле состоит из 4-х образцов разного масштаба пространства и времени: 1) урочище, 2) экосистема (биогеоценоз), 3) континент (острова, флоры географических стран) и 4) зональные биомы. Наборы островов при объединении дают более крутые кривые площадь-виды, чем сухопутные объединяемые образцы той же биогеографической провинции.
Параметр с (наклон прямой в билогарифмических координатах) из уравнения S=сА z в биоме субтропиков имеет наибольшее значение, а в высокогорном биоме пуна (Анды) - наименьшее. (где S-число видов на участке, A-площадь участка, c-const). Неизменно межархипелаговое z превышает материковое. Параметр z не зависит от используемых единиц и значения логарифмического основания, а параметр с зависит.
Другой известный образец изменения БР - широтный, очень древний, формировался десятки-сотни милл. лет. Его примеры-образцы прослежены и в окаменелостях, благодаря умению геологов оценивать широту местности по направлению их остаточной намагниченности. Чем ближе к экватору архипелаг, тем больше z его островов.
Установлено, что лес неотропиков в 5 раз богаче африканского. Приблизительно 35000 видов цветковых обитают в тропической Азии и Океании, что соответствует «с» - значению в два раза большему, чем в южной Африке (Капское царство). Разнообразие птиц в тропическом лесу Америки в 4-5 раз превышает таковое в умеренном.
Разнообразие местообитания прямо определяет разнообразие его населения. Для птиц и других позвоночных, такая зависимость - не абсолютна. Возмущения также определяет уровень БР. Чем чаще в одном месте возмущения, тем меньше в нем будет видов. Это подтверждается наблюдениями и экспериментами на коралловых рифах и островках. Так разнообразие моллюсков на валунах максимально на промежуточном уровне мало-масштабного возмущения.
Связь объема БР с продуктивностью также не однозначна. В маломасштабных экспериментах (на участках от 1 м 2 до 1 га) внесение удобрений приводит к снижению БР. То же, отмечено при загрязнении и в водных экосистемах. В более крупных, относительно не нарушенных регионах большее разнообразие сопровождалось более высокой продуктивностью. Затем по ряду групп млекопитающих (грызуны, плотоядные, австралийские тропические виды, у растений на двух континентах, средиземноморские растения) кривая имеет пик разнообразия при промежуточной продуктивности (унимодальная форма). Однако для растений эта модель остается проблематичной, а у древесных США разнообразие не теряется при более высокой продуктивности.
Главные унимодальные образцы изменения БР исходят из горных тропиков. (Так у мхов и папоротников максимум БР на средних высотах). Тропический средневысотный «пик» отмечен и для ряда таксонов животных. Такая же зависимость установлена у многих морских организмов (десятиногих, кумовых раков, гастропод, рыб, иглокожих, полихет, протобранхий). Однако, как и в широтном образце, имеются исключения.
Установленный Н.Н. Воронцовым и Ляпуновой феномен интенсивного видообразования у млекопитающих (роды Elliobus, Mus) в сейсмически активных зонах стимулирует дальнейший интерес к работе с биотой в таких местообитаниях, в которых, как правило, и повышена концентрация этносов. С аналогичным явлением ассоциируются Курская магнитная и одноименная ботаническая аномалии. Повышенное разнообразие насекомых отмечено в зонах интрогрессивной гибридизации деревьев. Гибриды поддерживают в 2 раза большее насекомых и патогенных грибов.
Образцы разнообразия во времени укладываются на оси временной шкалы, простирающейся от одного года до сотен миллионов лет. Изучение растительных окаменелостей, останков морских беспозвоночных указывает на рост БР в ходе эволюции.
При этом в течении каждого миллиона лет заменяется приблизительно 20-25% всех видов. Но у некоторых таксонов в стабильной (морской) среде на протяжении 1 млн. лет разнообразие может и не меняться вообще. Для паразитических консорций важен эволюционный возраст хозяина.
Малочисленность паразитов у древесных видов в Великобритании свидетельствует о недавнем появлении деревьев на острове после отступления последнего ледника. В целом образец «возраст хозяина» работает только в относительно короткие периоды в довольно неестественных обстоятельствах. Когда же колонисты-хозяева набирают всю гамму паразитов этот образец исчезает.
В ходе восстановительных сукцессии БР растет. Зарастания заброшенных участков в Пъедмонте (США) за 200 лет показало рост БР в первые 100 лет и, затем, его выравнивание. Зарастание вырубок сопровождается заселением их травами, что увеличивает БР, которые позже замещаются кустарниками и деревьями,что уменьшает БР.
Отловы бабочек в стационарные световые ловушки в Канаде (в течении 22 лет) и в Англии показывают, что кривые «время-виды» существуют, но возможно они не имеют тех же самых значений коэффициента как и кривые «площадь-виды».
В холодном климате сезонное варьирование БР определено спячкой беспозвоночных и холоднокровных позвоночных, перелетами птиц и даже насекомых. В тропических и субтропических горах сезонные перемещения проявляются в виде вертикальных миграций. Субтропические регионы часто обмениваются видами летом и зимой.
Помимо пространства и времени на БР влияют и другие, так называемые, второстепенные параметры: 1) размер тела (в пределах таксона больше видов промежуточного размера), 2) специфика трофических сетей и цепей.
Неразмерные образцы БР не прямо связаны с местом и временем, а зависят от трофического уровня. Чем он выше, тем меньше видов его используют. Из проанализированных 92 сетей только 3 (все морские) имели шесть уровней. Среди наземных сетей в этом плане выделяются с участием галлообразователей. Из четырех таких сетевых сообществ, два имело 6 уровней, одно - 7 и одно - 8. Виды высшего уровня в таких сетях получают корм от многих более низких.
Соотношение видов в комплексах хищник-жертва, в сетях насекомых, кажутся постоянными, несмотря на изменяющееся разнообразие. Анализ соотношений «типов» хищников линейно соответствует числу «типов» жертв (это правило Кохена, где тип – не вид, он может быть стадией жизненного цикла этого вида или собранием видов со сходной морфологией и тактикой избегания).
Имеются три основных формы видообразования: 1) географическое, 2) полиплоидизация и 3) конкурентное. В основе географического (аллопатрического) - лежит образование барьеров. Скорость его формирования зависит от: 1) географических обстоятельств и 2) размера ареалов видов. Географические обстоятельства – наличие географических преград. Классические примеры Гавайи и о. Байкал.
Чем больше ареал, тем выше вероятность его расчленения. Барьеры бывают двух видов: «ножи» и «рвы». Вероятность расчленения ареала зависит от формы ареала, формы и длины барьера. Ареал промежуточного размера, по результатам моделирования, наиболее вероятно может быть разделен, потому что итоговая вероятность вытекает из умножения вероятностей, из которых одна - увеличивается с 0, другая - падает до 0. На скорость дивергенции видов, помимо размера популяции (мелкие более консервативные), обратное влияние оказывает время генераций. Короче поколения - выше разнообразие. Конкурентное видообразование, по-видимому, наиболее распространенное. Различные способы видообразования дают и различные предсказания. Знание, какие способы производят больше видов, поможет объяснять образцы видимого разнообразия. Их быстродействие принципиально различно. Самая быстрая полиплоидизация. Она не требует изоляции. Конкурентное видообразование занимает 10- 100 поколений. Географическое - требует тысяч и сотен тысяч лет. Без наличия плохо используемых местообитаний, естественный отбор не может расширить различие у видов.
Ни полиплоидия, ни географическое видообразование не имеют скоростей, которые бы зависели от неиспользованных возможностей. Поскольку конкурентное видообразование подпитывается экологической возможностью оно должно утихнуть по мере накопления видов в сообществе. Ни полиплоидизация, ни географическое видообразование не зависят от числа наличных видов, а вот при конкурентном «цеха закрываются» с падением спроса на «изделие». Большинство видообразований, по мнению М. Розенцвейга, является аллопатрическими. Разнообразие выше там, где высока вероятность изоляции. Никакой другой способ, кроме географического видообразования, не объясняет, высокую заселенность гор эндемиками. Полиплоидизация - главная сила при видообразовании растений, особенно вне тропиков. Наименьшая доля полиплоидов у растений исходит из Кот-Ивуара, наибольшая из арктической флоры. При чем, чем выше широта или высота над уровнем моря, тем выше доля видов образованных полиплоидией. В эту схему вписывается и в целом флора Кавказа (расположенная на пол-пути к полюсу от экватора) имеющая 50% полиплоидов, что типично и для низменности на этой широте.
Основные причины вымирания на рассматриваемой площади: 1) несчастные случаи, 2) взаимодействие популяций (конкуренция). Вероятность вымирания вида определяется соотношением размеров: текущая/минимально жизнеспособная популяции.