Курсовая работа: Способы утилизации отходов, образующихся при огневой зачистке поверхности металлов
Потоком бомбардирующих ионов, ускоренных падением потенциала в катодных пятнах, очищаемой поверхности передается энергия с плотностью порядка 1011 Вт/м2. При этом, по оценкам ряда исследователей [4, 5], в катодном пятне температура достигает (5-10) – 103К, а давление пара оксидов и металла 107-108 Па. Отсюда механизм очистки металлов от оксидов и других загрязнений в катодном пятне можно представить в режиме «стоп-кадр» следующим образом. Над металлической поверхностью находится слой плотного металлического пара или слой перегретого металла, с поверхности которого в окружающее пространство со сверхзвуковой скоростью истекают струи газовой смеси металла с диссоциированными оксидами. В этой смеси компоненты с низким потенциалом ионизации (в основном атомы металлов – по уравнению Саха [6]) находятся в состоянии плазмы. Катодные пятна хаотически под воздействием собственных или внешних магнитных полей перемещаются по поверхности очищаемого изделия. Исследования показали, что скорость перемещения катодных пятен с плотностью тока порядка 1010 А/м2 зависит от толщины оксидного слоя (печная, прокатная окалина, ржавчина, другие загрязнения), давления насыщенного пара материала изделия и загрязняющих веществ на поверхности, теплопроводности, температура очищаемого изделия, конфигурации и рельефа поверхности, давления и химического состава окружающей среды.
В некоторых случаях катодная область дугового разряда на очищаемом изделии представляет собой сплошной нитевидный фронт на границе очищенного металла и оксидного покрытия. Длина или периметр нитевидного фронта катодной области может достигать сотен миллиметров. Это наиболее производительный режим плазменно-дуговой очистки.
Наибольшая производительность и высокое качество плазменной электродуговой очистки достигается при понижении давления внешней среды относительно атмосферного до 1,33х102 – 1,33 Па [7-9]. В этом диапазоне давлений электрическая дуга стабильная, парциальное давление кислорода ниже упругости диссоциации большинства оксидов металлов при температурах, реализуемых в катодной области вакуумной дуги, благодаря чему на очищаемой поверхности интенсивно протекает реакция диссоциации оксидов и других загрязнений, их ионизация и испарение (сублимация). Ионизируются в основном металлы, при этом ионы под воздействием электростатического поля, возникающего в области катодного падения потенциала, ускоряются и имплантируются в поверхность очищаемого изделия. В результате на поверхности очищенного изделия образуется слой металла, восстановленного из оксидов. Энергозатраты на очистку 1 м2 в зависимости от степени загрязненности поверхности составляют 0,3 – 2,0 кВт/ч.
Глава 3 АБРАЗИВНЫЕ МАТЕРИАЛЫ ИЗ ОТХОДОВ
ОГНЕВОЙ ЗАЧИСТКИ ПОВЕРХНОСТЕЙ
Огневая зачистка поверхности стальных заготовок, болванок, брусков и плит, проводимая для удаления дефектов поверхности сопровождается образованием отходов. Огневая зачистка состоит в быстром удалении поверхностного слоя стали при сжигании топлива в кислороде, подводимого к поверхности с помощью одной или нескольких горелок. Кислород окисляет часть стали, причем происходит выделение тепла и повышение температуры, приводящее к плавлению поверхностного слоя. Образующиеся при этом отходы представляют собой частично окисленные частицы стали, главным образом сферической формы.
Отходы огневой зачистки охлаждают, смывают с поверхности стали струей воды под высоким давлением и собирают в бассейне. Размер частиц не менее чем 0,15 и не более 50,8 мм в диаметре. Частицы состоят из внешней оболочки из окиси железа, окружающей внутреннее металлическое ядро, которое имеет химический состав, аналогичный обрабатываемой стали.
Отходы огневой зачистки не находят специального применения. В последнее время предпринимают попытки их переработки в стальных дробилках для выделения железа, которое содержится в частицах. Отходы смешивают с окалиной, стальной стружкой и подобными материалами и смесь добавляют к агломерату, из которого выделяют железо. Однако для этого могут быть использованы только крупные частицы. Из этого следует, что большинство крупных частиц необходимо удалять из мельниц и складировать. В последние годы широкое распространение поверхностной зачистки стали привело к росту использования автоматических машин для огневой зачистки поверхностей. В результате возросло количество отходов, что требует увеличения времени на транспортировку и объема хранилищ.
Процесс позволяет получать материал с твердостью HRC 20—35, который может быть использован в качестве градуированного по размеру металлического абразива, обладающего хорошей жесткостью, временем службы и повышенной чистящей способностью по сравнению с продажными градуированными стальными абразивами (сферическая дробь, стальная остроугольная дробь).
Отходы просеивают для отделения частиц от посторонних материалов и делят на фракции, содержащие частицы диаметром менее 6,35 и более 6,35 мм. Фракция >6,35 мм возвращается в процесс производства стали. Фракция <6,35 мм помещается в дробильные мельницы и дробится до тех пор, пока наружная оболочка частиц не разрушится на мелкие куски и не отделится полностью от внутреннего металлического ядра. Обломки оболочки и металлические ядра отделяют друг от друга просеиванием. Металлическую дробь разделяют на фракции просеиванием на ситах разных размеров.
Металлическая дробь имеет микроструктуру неотпущенного мартенсита с чистотой поверхности токарной обработки, она значительной степени свободна от межзеренного и внутризеренного раскалывания, обладает твердостью около HRC 20—35 и характеризуется хорошей ударной прочностью и увеличенным временем службы.
Механические методы очистки поверхности
Механические методы очистки позволяют создать шероховатую поверхность, обеспечивающую надежную адгезию покрытия с металлом, отличаются сравнительной простотой, относительно небольшой стоимостью и универсальностью, за исключением дробеструйной и гидравлической очисток. К механическим методам очистки относятся гидроабразивный, пескоструйный, дробеметный, дробепескоструйный, в галтовочных барабанах, на специальных станках, ручными инструментами, механизированными инструментами.
Вручную поверхности очищают простейшими инструментами — стальными шпателями, скребками, стальными проволочными щетками и т. п. Этот метод простой, но очень трудоемкий, в настоящее время применяется довольно редко, при небольшом объеме окрасочных работ, например в единичном производстве. Ручные электрические и пневматические машины, называемые иначе механизированными инструментами, применяемые для очистки металлических поверхностей изделий, позволяют повысить производительность очистительных работ в единичном и мелкосерийном производстве по сравнению с очисткой вручную в 5, а во многих случаях даже в 15, раз и значительно облегчить ручной труд. По конструкции рабочего органа они бывают прямые, торцовые и угловые.
Наиболее распространенный тип рабочего инструмента— ручные пневматические прямые шлифовальные машины с ротационным пневмодвигателем, например модели П-2009, ПШМ-08-90, П-2008, ШР-2, 9668-512 и др.; конструкции их во многом сходны. Ось рабочего органа у них совпадает с осью вала двигателя (поэтому и в названии слово «прямые»).
Угловые пневматические шлифовальные машины предназначены для обработки поверхностей в труднодоступных местах. Вместо абразивного инструмента эти машины оснащают торцовой стальной проволочной щеткой и используют для очистки металлических поверхностей от ржавчины, старой краски, зачистки сварных швов, углов и поверхностей, имеющих выступы.
Представителем угловых пневматических машин является модель П-2109. В ее корпусе установлен пневмо-двигатель с центробежным регулятором частоты вращения. На шлицевом конце вала ротора двигателя насажено коническое зубчатое колесо, которое передает вращение коническому зубчатому колесу, смонтированному на шпинделе в угловой головке. На корпусе имеется металлическое кольцо для подвешивания машины на рабочем месте к балансиру.
Пневматическая угловая щетка с нереверсивным ротационным двигателем, которой в течение часа можно очистить до 5—6 м2 металлической поверхности. Сжатый воздух из заводской сети поступает через шланг внутрь рукоятки. При нажатии пальцем на нижнюю головку цилиндрического золотника кольцевая проточка его совмещается с воздушным каналом, имеющимся в корпусе, сжатый воздух устремляется в рабочую полость пневмодвигателя, действует на лопатки ротора, заставляет его вращаться. На конце вала ротора закреплено коническое зубчатое колесо, которое передает вращение находящемуся с ним в зацеплении зубчатому коническому колесу, насаженному на шпиндель угловой головки. На нижнем конце шпинделя смонтированы две чаши, в которых закреплены два сменных вкладыша, представляющих собой щетки, выполненные из стальной проволоки. Беспрерывная работа стальной щетки рассчитана на 1—3 рабочие смены, после чего ее заменяют новой.
К ручному электрическому инструменту, применяемому для очистки металлических поверхностей, принадлежат шлифовальные машины моделей С-499А, И-65, И-82 и др., на которые вместо шлифовального круга закрепляют стальные проволочные щетки.
Электросверлильные машины как прямые, так и угловые, используют для очистки труднодоступных мест, например, для выполнения этой операции у электросверлилки И-38А вместо сверла в патроне закрепляют металлическую проволочную щетку.
Пескоструйная и дробеструйная очистка металлической поверхности от окалины, ржавчины и старой краски металлическим песком или дробью является эффективным способом струйной подготовки поверхности к окрашиванию. Металлический песок (представляет собой рубленую проволоку, длина частиц которой равна диаметру , т. е. 0,4—2,7 мм) или дробь диаметром 0,2—8,0 мм, направляемые сжатым воздухом через сопло специального аппарата, с силой ударяются об очищаемую поверхность; в результате на последней образуется равномерная шероховатость, обеспечивающая хорошую прилипаемость лакокрасочного материала.
Обработка поверхности изделия сухим кварцевым песком в закрытых помещениях запрещена из-за вредного действия на здоровье работающих образующейся кварцевой пыли, она применяется только на открытом воздухе для очистки мостов, бензохранилищ и других крупногабаритных сооружений.
Металлический песок и дробь должны быть из того же материала или материала, близкого по электрохимической характеристике к материалу очищаемой поверхности. В этом случае частицы металла, остающиеся на поверхности, не могут быть причиной преждевременного появления под слоем покрытия очагов коррозии. В качестве материала для изготовления песка и дроби применяют сталь, чугун, алюминий, медь, бронзу и другие материалы; песок и дробь можно применять многократно.
Очистка пескоструйными и дробеструйными аппаратами сопровождается образованием металлической пыли, поэтому очистку этими аппаратами поверхности изделий осуществляют в специальных кабинах, камерах, металло-пескоструйных и дробеструйных барабанах или используются установки, оснащенные этими аппаратами.
Очистку крупногабаритных размером 1,8x1,5x1,5 м изделий, отливок, поковок осуществляют в полуавтоматической установке типа 361.
Применение передвижных и переносных дробеструйных аппаратов с обеспыливанием исключает загрязнение рабочего места продуктами очистки и обеспечивает высокое качество подготовки поверхности изделия к окрашиванию.
Схема передвижного аппарата БДУ-Э2 для беспыльной очистки. Давлением сжатого воздуха открывается клапан и дробь или металлический песок из резервуара через шланг направляется к сопловой головке и выбрасывается из ее сопла на очищаемую поверхность. Нижняя часть сопловой головки снабжена металлической полой щеткой. В процессе очистки щетку слегка прижимают к очищаемой поверхности, предотвращая разбрасывание отработавшей дроби (или песка) и продуктов очистки, которые эжектором отсасываются из сопловой головки через кольцевой зазор, имеющийся между соплом и внутренней поверхностью конусной части сопловой головки, и направляются по шлангу в сепаратор, где дробь или песок отделяются от продуктов очистки и пыли и через перепускной клапан попадают снова в резервуар.
Загрязненный воздух из сепаратора поступает в циклон, крупные и средние частицы окалины, ржавчины и пыли оседают в его пылесборнике. Затем воздух проходит через матерчатый фильтр сборника пыли, очищается от мелких пылевидных частичек и выбрасывается в атмосферу.
Техническая характеристика передвижного аппарата БДУ-Э2: давление сжатого воздуха 0,5—0,7 МПа, расход сжатого воздуха 400 м3/ч, диаметр отверстия дробеструйного сопла 7 мм, производительность очистки от ржавчины 4—8 м2/ч, масса загружаемой дроби 100 кг, масса аппарата 260 кг, габаритные размеры 800X1100Х Х2000 мм.
Ручной беспыльный аппарат работает по тому же принципу, что и БДУ-Э2. Аппарат снабжен комплектом сменных головок-щеток, которые используют для очистки поверхностей различного профиля, и рукояткой для его перемещения.
Гидроабразивный способ очистки состоит в том, что из резервуара установки на очищаемую поверхность изделия через сопло под давлением сжатого воздуха направляется струя смеси кварцевого песка и воды (пульпа). Абразивным материалом может служить не только кварцевый песок, но и молотый гранит и шлак. В абразивную смесь вводят ингибиторы — вещества, предотвращающие быстрое появление коррозии на очищенных влажных поверхностях. Кроме того, поверхности изделия после очистки промывают в холодной и горячей воде, а затем в растворе пассиваторов — хромпика или нитрита натрия—для предотвращения коррозии.
Существуют несколько конструкций гидроабразивных установок, отличающихся системами смешения абразивного материала с водой и подачи рабочей смеси к соплу: давлением сжатого воздуха, давлением, создаваемым насосом на быстровращающийся ротор, который рабочую смесь отбрасывает на очищаемую поверхность; раздельная подача песка и воды сжатым воздухом и др.