Курсовая работа: строение воды как физического тела - гидрофизика
Два атома водорода замещают вакансию двух недостающих (до восьми) электронов наружной оболочки для ее устойчивости. Можно было бы предполагать, что атом кислорода и два атома водорода в молекуле воды образуют у центрального атома кислорода угол, близкий к 180°. Однако в действительности он значительно меньше - всего 104° 27' (рис.1.2), что приводит к неполной компенсации внутримолекулярных сил, избыток которых обусловливает асимметрию распределения зарядов, создающую полярность молекулы воды. Эта полярность у воды, более значительная, чем у других веществ, обусловливает ее дипольный момент и диэлектрическую проницаемость. Последняя у воды весьма велика и определяет интенсивность растворения водой различных веществ. При 0 °С диэлектрическая проницаемость воды (в твердой фазе) составляет 74,6; с повышением температуры она падает.
Так, при 20° С диэлектрическая проницаемость воды равна 81. Что это значит? Это значит, что два противоположных электрических заряда в воде взаимно притягиваются с силой, равной ~ 1/80 их взаимодействия в воздухе, и что отделение ионов от кристаллов какой-либо соли в воде в 80 раз легче, чем в воздухе.
Многочисленные схемы строения молекулы воды являются гипотетическими, построенными на косвенных наблюдениях приборами некоторых признаков поведения и свойств молекул и атомов. При этом следует помнить, что ни атомы, ни молекулы не имеют четких границ из-за неопределенности как формы, так и точных размеров орбит, по которым движутся электроны, образующие по сути дела электронное облако, зависящее от энергетического состояния электрона. Последнее может быть спокойным или возбужденным, что зависит, в частности, и от температуры. Отсюда разнобой в значениях вычисленных радиусов, а также схематичность гипотетических моделей атомов и молекул.
2. Структура воды в трех ее агрегатных состояниях
Проблема оценки структуры воды пока остается одной из самых сложных. Рассмотрим кратко две обобщенные гипотезы о структуре воды, получившие наибольшее признание, одна — в начальный период развития учения о структуре воды, другая — в настоящее время.
Согласно гипотезе, предложенной Уайтингом (1883г.) и имеющей к настоящему времени различные интерпретации, основной строительной единицей водяного пара является молекула H2 O, называемая гидроль, или моногидроль. Основной строительной единицей воды является двойная молекула воды (H2 O)2 —дигидроль; лед же состоит из тройных молекул (H2 O)3 — тригидроль. На этих представлениях основана так называемая гидрольная теория структуры воды.
Водяной пар, согласно этой теории, состоит из собрания простейших молекул моногидроля и их ассоциаций, а также из незначительного количества молекул дигидроля.
Вода в жидком виде представляет собой смесь молекул моногидроля, дигидроля и тригидроля. Соотношение числа этих молекул в воде различно и зависит от температуры. Согласно этой гипотезе, соотношение количества молекул воды и объясняет одну из основных ее аномалий — наибольшую плотность воды при 4°С.
В табл.1.1 показан молекулярный состав воды, льда и водяного пара по различным литературным источникам.
Так как молекула воды несимметрична, то центры тяжести положительных и отрицательных зарядов ее не совпадают. Молекулы имеют два полюса — положительный и отрицательный, создающие, как магнит, молекулярные силовые поля. Такие молекулы называют полярными, или диполями, а количественную характеристику полярности определяют электрическим моментом диполя, выражаемым произведением расстояния lмежду электрическими центрами тяжести положительных и отрицательных зарядов молекулы на заряд e в абсолютных электростатических единицах:
Для воды дипольный момент очень высокий: p = 6,13·10-29 Кл·м. Полярностью молекул моногидроля и объясняется образование дигидроля и тригидроля. Вместе с тем, так как собственные скорости молекул возрастают с повышением температуры, этим можно объяснить постепенный распад тригидроля в дигидроль и далее в моногидроль соответственно при таянии льда, нагревании и кипении воды.
Другая гипотеза строения воды, разрабатывавшаяся в XX веке (модели О.Я.Самойлова, Дж.Попла, Г.Н.Зацепиной и др.), основана на представлении, что лед, вода и водяной пар состоят из молекул H2 O, объединенных в группы с помощью так называемых водородных связей (Дж.Бернал и Р.Фаулер, 1933г.). Эти связи возникают в результате взаимодействия атомов водорода одной молекулы с атомом кислорода соседней молекулы (с сильно электроотрицательным элементом). Такая особенность водородного обмена в молекуле воды обусловливается тем, что, отдавая свой единственный электрон на образование ковалентной связи с кислородом (см. рис.1.3), он остается в виде ядра, почти лишенного электронной оболочки. Поэтому атом водорода не испытывает отталкивания от электронной оболочки кислорода соседней молекулы воды, а, наоборот, притягивается ею, и может вступить с нею во взаимодействие. Согласно изложенному, можно предположить, что силы, образующие водородную связь, являются чисто электростатическими. Однако, согласно методу молекулярных орбиталей, водородная связь образуется за счет дисперсионных сил, ковалентной связи и электростатического взаимодействия.
Таблица 1.1
Молекулярный состав льда, воды и водяного пара, %
Молекула | Лед | Вода | Пар | |||
Температура, °С | ||||||
0 | 0 | 4 | 38 | 98 | 100 | |
Моногидроль [H2 O] | 0 | 19 | 20 | 29 | 36 | >99,5 |
Дигидроль [(H2 O)2 ] | 41 | 58 | 59 | 50 | 51 | <0,5 |
Тригидроль [(H2 O)3 ] | 59 | 23 | 21 | 21 | 13 | 0 |
Таким образом, в результате взаимодействия атомов водорода одной молекулы воды с отрицательными зарядами кислорода другой молекулы образуются четыре водородные связи для каждой молекулы воды. При этом молекулы, как правило, объединяются в группы — ассоциаты: каждая молекула оказывается окруженной четырьмя другими (рис. 1.3). Такая плотная упаковка молекул характерна для воды в замерзшем состоянии (лед Ih) и приводит к открытой кристаллической структуре, принадлежащей к гексогональной симметрии. При этой структуре образуются «пустоты — каналы» между фиксированными молекулами, поэтому плотность льда меньше плотности воды.
Повышение температуры льда до его плавления и выше приводит к разрыву водородных связей. При жидком состоянии воды достаточно даже обычных тепловых движений молекул, чтобы эти связи разрушить.
Рис.2 Схема взаимодействия молекул воды
1 — кислород, 2 — водород, 3 — химическая связь, 4 — водородная связь.
Считается, что при повышении температуры воды до 4°С упорядоченность расположения молекул по кристаллическому типу с характерной структурой для льда до некоторой степени сохраняется. Имеющиеся в этой структуре отмеченные выше пустоты заполняются освободившимися молекулами воды. Вследствие этого плотность жидкости увеличивается до максимальной при температуре 3,98°С. Дальнейший рост температуры приводит к искажению и разрыву водородных связей, а, следовательно, и разрушению групп молекул, вплоть до отдельных молекул, что характерно для пара.
3. Разновидности воды
На Земле содержится около 1500 млн. км3 воды. Причем доля пресной воды составляет всего 10% от общего количества. А если учесть то факт, что большая часть пресной воды содержится не на поверхности земли, а в земной коре, можно сделать вывод о том, что доля относительно доступной пресной воды очень и очень ограничена. В зависимости от типа залегания, свойств и химического состава вся вода на Земле подразделяется на множество видов:
- соленая вода - безусловно, главным хранилищем соленой воды на Земле является Мировой океан. Мировой океан поистине огромен, если говорить языком цифр, то Мировой океан - это: 97% всей воды на планете; 74% всей площади Земли и около 1,35 млрд. км3 объема;
Ионные вещества, содержащиеся в морской воде в концентрации выше 0,001 г/кг (1 млн.д.) по весу:
Вещество - Содержание, г/кг морской воды
Хлорид-ион C1- - 19,35
Ион натрия Na + - 10,76
Сульфат-ион SO4 2- - 2,71
Ион магния Mg2 + - 1,29
Ион кальция Са2 + - 0,412
Ион калия К + - 0,40
Диоксид углерода - 0,106