Курсовая работа: Свойства этилена в растениях

2. Физиологическая роль этилена

2.1 Свойства этилена

Этилен представляет собой бесцветный газ, обладающий слабым, едва ощутимым запахом. Он плохо растворим в воде (при 00 в 100г воды растворяется 25,6 мл этилена), горит светящимся пламенем, образует с воздухом взрывчатые смеси. Термически менее устойчив, чем метан. Уже при температуре выше 350 0 этилен частично разлагается на метан и ацетилен. При температуре около 12000 диссоциирует главным образом на ацетиле и водород.

В природных газах (за исключением вулканических) этилен не встречается. Он образуется главным образом при пирогенетическом разложении природных соединений, содержащих органические вещества (Петушкова,1986).

В очень низких концентрациях, порядка 0,001-0,1 мкл/л он способен тормозить и изменять характер роста растений, ускорять созревание плодов. Этилен синтезируется в бактериях, грибах, низших и высших растениях, причем в больших количествах. Далеко не все организмы способны к синтезу этилена. Так, из исследованных 228 видов микроскопических грибов лишь 25% выделяют этилен. Организмы контролируют скорость синтеза этилена. Тем самым регулируется его концентрация, кроме того избыток этилена может свободно диффундировать в окружающую среду. Скорость образования этилена различна у разных органов и систем. Образование этилена возрастает при старении и опадении листьев и плодов. Оно тормозится недостатком кислорода (у всех сельскохозяйственных растений, кроме риса) и может регулироваться температурой и светом. Влияет на синтез этилена и уровень СО2 . Причем у разных растений углекислый газ может, как стимулировать, так и угнетать образование этилена (эл. ссылка №1).

Как показано в опытах Д.Н. Нелюбова, этилен угнетает рост стебля в длину и вызывает его утолщение. Впоследствии ученые выяснили, что это происходит за счет изменения направления роста клеток стебля, которому соответствует изменение ориентации элементов цитоскелета. Этилен подавляет рост корня, ускоряет старение, что хорошо прослеживается на листьях и цветках растений. Этилен ускоряет также созревание плодов, вызывает опадение листьев и плодов . Он индуцирует образование в черешке специального отделительного слоя клеток, по которому происходит отрыв листа от растения, а на месте отрыва вместо ранки остается индуцированный этиленом защитный слой клеток с опробковевшими стенками. Этот фитогормон влияет на пол цветков, вызывая образование женских цветков у растений, для которых характерны раздельные женские и мужские цветки, например у огурца, тыквы и кабачков.

Образование корней на стебле и формирование в стебле особой ткани - аэренхимы, по которой кислород поступает в корни, индуцируются этиленом. Это спасает растения в условиях кислородного голодания корней, в которое они попадают при затоплении почвы. Помимо этого этилен вызывает и другие изменения в растениях. Например, эпинастию, изменяющую угол наклона листа по отношению к стеблю (листья опускаются).

В ответах растений на различные повреждающие воздействия - механические, химические и биологические - также участвует этилен. Он вовлекается в ответ растений на атаку патогенов. Этилен включает системы защиты растений от патогенов. При этом он индуцирует синтез большого числа ферментов, например ферментов, разрушающих клеточную стенку грибов (хитиназы, специфические глюканазы), а также ферментов, участвующих в синтезе фитоалексинов - соединений, ядовитых для патогена.

При поранении растений происходят синтез и выделение этилена. Есть данные о том, что при объедании листьев древесных растений животными объеденное растение выделяет этилен и под его воздействием в листьях соседних растений могут синтезироваться вещества, делающие листья невкусными для животных (Bleecker,1996) .

2.2 Биосинтез этилена

Ключевым соединением для биосинтеза этилена в растениях является аминокислота метионин. При взаимодействии метионина с макроэргическим соединением АТФ возникает промежуточный продукт S-аденозилметионин, который далее превращается в 1-аминоциклопропан-1-карбоновую кислоту (АЦК) - непосредственный предшественник этилена в растениях. Затем АЦК в присутствии кислорода разлагается с образованием этилена, аммиака, муравьиной кислоты и СО2. Каждый этап катализируется определенным ферментом. Ключевым ферментом, на уровне которого регулируется биосинтез этилена, является АЦК-синтаза. АЦК-синтаза не синтезируется в клетках постоянно, а индуцируется индукторами - веществами, вызывающими ее синтез. Такие ферменты принято называть индуцибельными. Синтез АЦК-синтазы индуцируют высокие концентрации ауксина, молекулы - химические сигналы грибной инфекции, а также сам этилен. Синтез АЦК-синтазы идет до тех пор, пока присутствует индуктор. Затем синтез прекращается, а образованные молекулы фермента быстро разрушаются, так как период их полураспада составляет 20-30 мин. Это подчеркивает, как жестко растение контролирует синтез этилена на уровне образования и разрушения ключевого фермента биосинтеза АЦК-синтазы.

Существенно, что в геноме растений существует большое семейство генов АЦК-синтазы, которые различаются по своей регуляции: одни включаются на разных стадиях нормального развития растений, другие - при поранении, третьи - при действии патогена и т.д. Это обеспечивает многофакторную систему регуляции синтеза этилена в растениях. Гены АЦК-синтазы и АЦК-оксидазы привлекают большое внимание генных инженеров, так как модификация растений по этим генам позволяет регулировать синтез этилена и, следовательно, регулировать скорость созревания плодов. На этом пути американские генные инженеры получили трансгенные растения томатов с увеличенным на месяц сроком хранения плодов.

Следующий этап биосинтеза этилена сводится к окислению АЦК. Он кислородозависим и не протекает в условиях кислородного голодания (анаэробиоза). Такая ситуация возникает в корнях при затоплении почвы. Без кислорода подавляются дыхание корня, синтез АТФ и зависящие от нее процессы. Нарушается снабжение побегов водой, элементами минерального питания, гормонами (цитокининами) и другими продуктами жизнедеятельности корня. Все это грозит гибелью растений. И тут включается этиленовая система защиты. В условиях анаэробиоза превращение в корнях АЦК в этилен прекращается. АЦК поступает в составе пасоки - раствора, поступающего из корней в побеги, в надземные органы, где нет недостатка О2 , и превращается там в этилен. Этилен индуцирует в побегах эпинастию - изменение угла наклона черешка к стеблю, в результате которого листья опускаются вниз, уходят от прямого действия солнечных лучей. При этом листья меньше нагреваются и меньше испаряют воды. Этилен индуцирует образование на стеблях корней, которые не выполняют поглощающей функции, но осуществляют специфические синтетические процессы, необходимые для нормального функционирования побега, в том числе восстанавливают снабжение надземных органов цитокининами. Кроме того, этилен индуцирует образование в стебле аэренхимы - ткани, по которой О2 попадает из стеблей в корни и обеспечивает их нормальную жизнедеятельность. Этот пример хорошо иллюстрирует, как этилен обеспечивает адаптацию растений к условиям кислородной недостаточности в зоне корней, возникающей при затоплении почвы.

При нормальном протекании жизни растений этилен активно синтезируется в созревающих плодах и стареющих листьях. Это понятно: он индуцирует созревание плодов, старение и опадение листьев. Однако высокий уровень синтеза этилена характерен также для меристематических тканей - зон клеточного деления. Это пока трудно объяснить. Синтез этилена в растениях вызывают высокие концентрации ауксина, что происходит на уровне индукции генов АЦК-синтазы. Синтезированный этилен подавляет реакции, вызываемые ауксином. Например, в определенном диапазоне концентраций ауксин активирует рост корня. Их превышение индуцирует синтез этилена, который подавляет рост корня. Таким образом, этилен включается в контроль растением действия ауксина по принципу обратной связи. Этилен выполняет такую же роль и в реакциях растений на высокие концентрации цитокининов (Bleecker,1996).

2.3 Этилен как гормон механического стресса

Выделение этилена тесно связано с механическим воздействием на клетки растений. Возьмем пример ответа проростка гороха, который наблюдал Нелюбов. Пока росток не достигнет поверхности, нужно защищать нежные клетки верхушечной меристемы от повреждения. Поэтому происходит изгиб и образование апикальной петельки. Сквозь почву растет не меристема, а более прочный нижележащий участок.

Когда на пути проростка появляется механическое препятствие (камень), проросток выделяет больше этилена, рост в длину приостанавливается и начинается утолщение. Проросток стремится преодолеть препятствие, усилив давление. Если это удалось, концентрация этилена падает, и рост в длину восстанавливается. Но если препятствие слишком крупное, то продукция этилена еще больше усиливается. Проросток отклоняется от вертикали и огибает камешек.

В воздушной среде концентрация этилена падает, проростки разгибают апикальную меристему, и начинается развитие листьев (Прохоров,1978).


2.4 Этилен и прикосновение

Вплоть до 1991 года у физиологов растений были достаточно отрывочные представления о том, как именно растения чувствуют прикосновение. Методом вычитания с-ДНК-библиотек было установлено, что опрыскивание растений Arabidopsisthaliana водой вызывает синтез новых матричных РНК - через 10-15 минут их уровень поднимался в сотни раз.

Опрыскивание является комплексным фактором: изменяется влажность воздуха, создается тень от водяных паров, и, наконец, листья подвергаются механической нагрузке. Каждый из факторов был исследован по отдельности. Выяснилось, что влажность не играет никакой роли, но если растение потереть стеклянной палочкой, оно почувствует это и через 10-15 минут ответит экспрессией новых м-РНК. Обнаруженные гены были обозначены как TCH1, TCH2, TCH3, TCH4, TCH5 (от английского touch - прикосновение).

Если, не прикасаясь к растению внезапно накрыть его черным колпаком, то в нем также повышается уровень TCH-матриц. Создание достаточно мощных звуковых эффектов не привело к желаемому результату: матричные РНК TCH в составе клеток не появились.

За что же отвечают гены, продукты которых появляются в клетках при прикосновении? Они оказались очень похожи на известные кальций-связывающие белки - кальмодулины. Эти белки вместе с Са2+ активизируют работу цитоскелета и способствуют переходу из золя в гель многих структур в растительной клетке. Растения, которые часто беспокоили стеклянной палочкой, заметно отстают в росте, от тех к которым не прикасались, однако оказываются механически более прочными, закаленными.

Белковый продукт гена TCH 4 оказался ксилоглюкан-эндотрансгликозилазой. Синтез этого белка можно вызвать также брассиностероидами. Те же эффекты можно вызвать добавлением этилена. При этом также происходит синтез Са-связывающих TCH-белков (Прохоров,1978).

2.5 Этилен и заживление ран

Многие растения образуют млечники, которые содержат латекс (натуральный каучук). Однако каучук не "застывает" внутри млечников (как и не сворачивается кровь в сосудах). Но стоит растение повредить, на поверхность выступает латекс, который быстро твердеет и закупоривает место повреждения. Латекс склеивает споры грибов и бактерий, застывает в ротовом аппарате насекомых или приклеивает их к капельке выступившего каучука.

О том, что заставляет латекс быстро твердеть при повреждении растения, долгое время ничего не знали бы, если бы не запросы сельского хозяйства. На плантациях гевеи затвердение латекса - вредный процесс: приходится заново делать насечки на стволах деревьев, подставлять сосуды для сбора каучука в новые места, что создает массу лишней работы.

Оказалось, что латекс застывает под действием этилена. Важную роль при этом играет минорный белок латекса - гевеин. С застыванием латекса можно до некоторой степени бороться, обрабатывая растения ингибиторами синтеза этилена. Наиболее известный ингибитор - ионы серебра, но есть и более дешевые. Таким образом, у растений-каучуконосов этилен способствует заживлению механических повреждений.

Кроме того, под действием этилена активизируется особая ткань раневая перидерма. Образуется пробковый камбий, который образует слой суберинизированной пробки, отделяющей здоровую (живую) ткань от больной (мертвой). Пробка высоко гидрофобная, что позволяет эффективно пресечь распространение грибов и бактерий, попавших в рану, предохраняет здоровую ткань от чрезмерного испарения.

К-во Просмотров: 374
Бесплатно скачать Курсовая работа: Свойства этилена в растениях