Курсовая работа: Технологический процесс изготовления кварцевой галогенной малогабаритной лампы типа КГМ 220-500
Вольфрамо-галогенные циклы возможны при использовании в качестве транспортирующего средства (переносчика) любого из четырех галогенов — йода, брома, хлора, фтора — и проходят, в принципе, по одинаковой схеме, которую в общем виде можно представить, следующим образом:
при низкой температуре
W+nXW+Xn
при высокой температуре
где X—используемый галоген; п — количество атомов. Схематично упрощенное представление об этих пробах показано на рис. 1. 2
При низкой температуре на стенках оболочки испарившийся вольфрам и галоген образуют химическое вольфрамо-галогенное соединение— галогенид. При определенной температуре это газообразное соединение улетучивается и из-за повышенной концентрации вблизи стенки диффундирует в направлении к раскаленному телу накала. Здесь галогениды диссоциируют на исходные составные части — вольфрам, который оседает на тело накала, и галоген, который в свободном виде движется и обратном направлении к стенке оболочки для соединения с новой порцией вольфрама.
При установившемся процессе в лампе атомы вольфрама могут вообще не достигать стенок оболочки, а соединяться с галогеном в непосредственной близости от нее; тогда почернение оболочки исключается. Но галогенид, разумеется, может образоваться и на самой стенке оболочки.
Однако одновременно с ростом интенсивности цикла растет опасность разрушения более холодных частей тела накала и держателей. Поэтому выбор галогена, а так же его концентрации является сложной задачей, связанной как со сроком службы тела накала и предотвращения разрушения более холодных участков металлических деталей лампы, так и с обеспечением устойчивого процесса протекания указанных химических реакций.
Вольфрамо-галогенные циклы могут быть получены и при использовании не чистых галогенов, а их соединений. Это в основном связано с токсичностью и агрессивностью используемых галогенов, а так же технологическими трудностями их введения в лампу и дозировки.
Экспериментально были найдены наиболее удобные соединения на основе водорода (HI, HBr, HC1) и галогенно-углеводородные (СНn Хn )
В настоящее время нашли широкое применение в производстве галогенных ламп бромистый метил (СН3 Вг) и бромидный метилен (СН2 Вг2 ).
2 Технологический процесс изготовления кварцевой галогенной лампы
2.1 Физические свойства кварцевого стекла и методы его обработки
Значительное уменьшение габаритных размеров галогенных ламп и необходимость создания условий для действия галогенного цикла потребовали наличия высоких температур на стенках оболочки. Все это сделало невозможным применять обычные электровакуумные стекла. Потребовалось использование кварца.
Кварцевое стекло кроме высокой температуры плавления имеет большую прозрачность в ультрафиолетовой, видимой и инфракрасной областях спектра, малую газопроницаемость, химически инертно к наполняющие газам и галогенным соединениям, имеет низкий температурный коэффициент линейного расширения и малочувствительно к термоудару, сравнительно хорош., обрабатывается.
Кварц—широко распространенный в природе минерал. Он является одной из кристаллических модификации кремнезема, химический состав которого представляет двуокись кремния SiO2 . В зависимости от состава, структуры, внешнего вида, светопрозрачности и окраски различают виды кремнезема: горный хрусталь агат, дымчатый кварц и др. Чистый кремнезем встречается в природе очень редко. Как правило, кроме двуокиси кремния в зависимости от географического расположения месторождений всегда имеется немало иных сопутствующих минералов, примесей и загрязнении Лучший кварц входит в состав горного хрусталя В чистом виде кварц совершенно бесцветен. Ничтожные посторонние примеси вызывают структурные дефекты и приводят к разнообразной окраске и ухудшению его физических свойств. В этом смысле горный хрусталь представляет собой, чистый кварц и пригоден без каких-либо дополнительных очисток для варки стекла. Остальные разновидности кварцевого сырья непригодны для получения оптически чистых кварцевых стекол и подвергаются сложному процессу обогащения Сырье сначала промывают, потом следуют процессы дробления, измельчения, рассеивания и отбора частиц затем идут кислотная обработка, промывка дистиллированной водой, сушка и отбор инородных включений.
Кварцевое стекло выплавляется из мелких чистых кристаллов кварца (кварцевого песка). Качество такого стекла зависит от многих факторов, определяемых исходным сырьем, способом получения, а также технологией его переработки. Отметим, что одним из основных трудно устранимых недостатков кварцевого стекла является наличие пузырьков газа, которые в дальнейшем при выработке труб вытягиваются, образуя капилляры.
Кварцевое стекло, представляющее собой плавленый кварц, можно получить различными методами Характерным является то, что многие физические свойств разных видов кварцевого стекла различны несмотря на практически полную идентичность их химического состава: 99,8—99,9% чистой окиси кремния.
За температуру плавления кварца принимают температуру плавления наиболее высокотемпературной модификации кремнезема, равную 1986 К.
Добавим, что кварц проницаем для водорода и гелий это объясняется сравнительно легкой миграцией этих газов в междоузлие кристаллической решетка кварца.
Различают два вида кварцевого стекла — прозрачное (оптическое и техническое) и непрозрачное. Непрозрачность кварцу придает большое количество распределенных в нем мелких газовых пузырей диаметром 0,03 - 0,3 мкм, которые рассеивают свет.
Оптически прозрачное кварцевое стекло, изготовленное из горного хрусталя, не содержит видимых газовых включений; поэтому оно совершенно однородно, обладает наименьшим среди стекол показателем преломления (1,4584) и наибольшим светопропусканием, особенно в ультрафиолетовой области спектра.
Кварцевое стекло устойчиво к электронной бомбардировке и радиоактивному облучению.
Для изготовления кварцевых элементов ламп используются кварцевые трубки для источников света, выпускаемые промышленностью. Государственный стандарт регламентирует выпуск трубок длиной 250—1000 диаметрами 4—50 мм и соответственно толщиной стенки 0,8—4,5 мм.
В зависимости от предельных отклонений наружного диаметра, толщины стенки, овальности, конусности, разностенности, стрелы прогиба, а также от показателей внешнего вида трубки выпускаются различных исполнений, классов и категорий. Лучшими являются трубки для которых отклонения по наружному диаметру и толщине стенки являются минимальными. Естествен что для изготовления галогенных ламп они являются наиболее подходящими, хотя и более трудоемкими при выработке; поэтому в повседневной работе часто приходится пользоваться кварцевыми трубками с худшими характеристиками.
Очень важными показателями качества кварцев трубок являются характеристики внешнего вида - наличие полос, посторонних включений, царапин, посечек, трещин, вмятин, рисок и свилей.
Для галогенных ламп, предназначенных для использования в проекционной и прожекторной технике, а также ламп другого назначения, где внешний вид и качество поверхностиимеют первостепенное значение, использование кварцевых трубок с дефектами внешнего вида для изготовления оболочек недопустимо.
Основными технологическими процессами обработки кварцевых трубок в процессе изготовления ламп являются обработка пламенем кварцедувных горелок и очистка поверхности.
Кварцевое стекло обрабатывают кислородно-водородным или кислородно-газовым пламенем горелок.