Курсовая работа: Теория процентов

Но следовало бы знать, что инфляция тоже развивается по принципу сложного процента. Пока инфляция не исчезнет, эти планируемые 20000 долл. через 9 лет будут стоить несколько меньше, чем они стоят теперь[10. с. 114-123].

Когда проценты выплачиваются ежегодно, вычисления по методу сложных и простых процентов приведут к одинаковому результату; в этом случае объявленная ставка процента и действительная ставка будут равны. Данные табл. 1 могут быть использованы для иллюстрации метода вычисления сложных процентов. В этом случае процентный доход, получаемый каждый год, остается на депозите, а не изымается. 50 долл., полученных с 1000 долл. в виде процентов за 1989 г., становятся частью остатка, на который выплачиваются проценты в 1990 г., и т.д.

Следует обратить внимание на то, что в процессе вычисления сложных процентов используется и метод простых процентов, т.е. проценты рассчитываются только на фактическую сумму за фактический период, в течение которого она находилась на депозите [6. с. 65-78].

Таблица 1. Данные об остатках сберегательного счета (при годовом начислении и реинвестировании по ставке 5%)

Дата

(1)

Вклад (или изъятие) (в долл.)

(2)

Остаток на счете на начало периода (в долл.)

(3)

Проценты за год (в долл.)

(4)

(2+З)

Остаток на счете на конец периода (в долл.)

1 янв. 1989 г. 1000 1000,00 50,00 1050,00
1 янв. 1990 г. (300) 750,00 37,50 787,50
1 янв. 1991 г. 1000 1787,50 89,38 1876,88

Таблица 2. Данные об остатках сберегательного счета (при полугодовом начислении и реинвестировании по ставке 5%)

Дата

(1)

Вклад (или изъятие) (в долл.)

(2)

Остаток на счете на начало периода (в долл.)

(3)

Проценты за год (в долл.)

(4)

(2)+(3)

Остаток на счете на конец периода (в долл.)

1 янв. 1989 г. 1000 1000,00 25,00 1025,00
7 янв. 1989г. 1025,00 25,63 1050,63
1 янв. 1990 г. (300) 750,63 18,77 769,40
7 янв. 1990г. 769,40 19,24 788,64
1 янв. 1991 г. 1000 1788,64 44,72 1833,36
7 янв. 1991 г. 1833,36 45,83 1879,19

Когда используется метод сложных процентов, объявленная и действительная ставки процента равны только в том случае, если процент выплачивается один раз в год. В общем, чем чаще выплачиваются проценты по объявленной ставке, тем выше будет действительная ставка процента. Вычисления процентов на основе данных о вкладах из табл. 1 включены в табл. 2; здесь предполагается, что проценты начисляются каждые полгода (дважды в год). Сумма процентов за каждый шестимесячный период находится умножением остатка за 6 месяцев на половину установленной ставки в 5% (см. столбец 3 табл. 2) [10. с. 114-123].

Сравнивая остаток на счете на конец 1991 г. в 1876,88 долл., подсчитанный в табл. 1 при норме в 5% с ежегодным начислением, с остатком на счете на конец 1991 г. в 1879,19 долл., подсчитанным в табл. 2 при норме в 5% с начислением раз в полгода, мы можем обнаружить, что более высокие доходы связаны с тем, что проценты начисляются чаще. Ясно, что в случае начисления процентов раз в полгода действительная ставка процента выше, чем 5% при начислении раз в год. Используя технику, которая в данном тексте не рассматривается, мы получим действительную ставку процента на вклады из табл. 2 в 5,063%. Сводка действительных ставок процента, связанных с объявленной 5%-й ставкой и различными периодами начисления (число процентных периодов), представлена в табл. 3.

Таблица 3. Действительная ставка процента для периодов начисления разной продолжительности (при объявленной ставке 5%)

Период начисления процентов Действительная ставка процента
Ежегодно 5,000
Каждые полгода 5,063
Ежеквартально 5,094
Ежемесячно 5,120
Еженедельно 5,125
Непрерывно 5,127

Непрерывное начисление процентов, которое представляет собой начисление в течение самого короткого из возможных промежутка времени, позволяет получить максимальную норму доходности при данной объявленной ставке процента. Из табл. 3 очевидно, что, чем чаще начисляется процент, тем выше действительная ставка. Из-за того влияния, которое оказывает на доход разница в продолжительности периодов начисления процентов, инвестору следовало бы оценивать действительную ставку процента, связанную с различными альтернативами, до того, как сделать выбор [12. с. 210-220].

2. Будущая и приведенная стоимость: развитие концепции сложных процентов

Будущая стоимость — это сумма, до которой возрастет текущий вклад за период с момента его помещения на счет, по которому начисляются сложные проценты (будущую стоимость иногда называют наращенной стоимостью). Возьмем депозит в 1000 долл., приносящий ежегодно 8%, рассчитанных методом сложных процентов. Чтобы найти будущую стоимость этого вклада в конце года, следует проделать такие вычисления:

Сумма денег на конец первого года = 1000 х (1 + 0,08) = 1080 долл.

К-во Просмотров: 361
Бесплатно скачать Курсовая работа: Теория процентов