Курсовая работа: Взаимосвязь математических способностей и уровня тревожности

Когда говорят о задатках способностей, обычно в первую очередь имеют в виду типологические свойства нервной системы. Как известно, типологические свойства – природная основа индивидуальных различий между людьми. На этой основе возникают сложнейшие системы разнообразных временных связей – скорость их образования, их прочность, лёгкость дифференцировок. Они определяют силу сосредоточенного внимания, умственную работоспособность.

Ряд исследований показал, что наряду с общими типологическими свойствами, характеризующими нервную систему в целом, существуют частные типологические свойства, характеризующие работу отдельных областей коры, выявляемые по отношению к разным анализаторам и разным системам мозга. В отличие от общих типологических свойств, которые определяют темперамент, частные типологические свойства имеют наибольшее значение при изучение специальных способностей.

А.Г. Ковалёв и В.Н.Мясищев склонны придавать несколько большее значение, чем другие психологи, природной стороне, естественным предпосылкам развития. По- видимому, к этой же категории можно отнести взгляды Б.М.Теплова и С.Л.Рубинштейна.

А.Н.Леонтьев и его последователи склонны в большей степени подчёркивать, роль воспитания в формировании способностей.

1 .2. Математические способности.

В исследование математических способностей внесли свой вклад и такие яркие представители определённых направлений в психологии, как А.Бинэ, Э.Торндайк и Г.Ревеш, и такие выдающиеся математики, как А.Пуанкаре и Ж.Адамар. Большое разнообразие направлений определяет и большое разнообразие в подходах к исследованию математических способностей. Разумеется, исследование математических способностей следует начинать с определения. Попытки такого рода делались неоднократно, но установившегося, удовлетворяющего всех определения математических способностей не имеется до сих пор. Единственное, в чём сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, “школьные” способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

Ещё в 1918 году в работе А.Роджерс отмечались две стороны математических способностей, репродуктивная (связанная с функцией памяти) и продуктивная (связанная с функцией мышления ). В. Бетц определяет мат. способности как способности

ясного осознания внутренней связи математических отношений и способность точно мыслить математическими понятиями.

Из работ отечественных авторов необходимо упомянуть оригинальную статью Д.Мордухай-Болтовского “Психология математического мышления”, опубликованную в 1918 году. Автор, специалист математик, писал с идеалистической позиции, придавая, например, особо значение “бессознательному мыслительному процессу”, утверждая, что “мышление математика глубоко внедряется в бессознательную сферу, то, всплывая на её поверхность, то погружаясь в глубину. Математик не осознает каждого шага своей мысли, как виртуоз движения смычка”. ( ) Внезапное появление в сознание готового решения какой-либо задачи, которую мы не можем долго решить, -пишет автор, - мы объясняем бессознательным мышлением, которое продолжало заниматься задачей, а результат всплывает за порог сознания.( )По мнению Мордухай-Болтовского наш ум способен производить кропотливую и сложную работу в подсознании, где и совершается вся “черновая” работа, причём бессознательная работа мысли даже отличается меньшей погрешностью, чем сознательная.

Автор отмечает совершенно специфический характер математического таланта и математического мышления. Он утверждает, что способность к математике не всегда присуще даже гениальным людям, что между математическим и нематематическим умом есть существенная разница. Большой интерес представляет попытка Мордухай-Болтовского выделить компоненты математических способностей. К таким компонентам он относит в частности:

*сильную память”, память на “предметы того типа, с которыми имеет дело математика”, память скорее не на факты, а на идеи и мысли.

*”остроумие”, под которым понимается способность “обнимать в одном суждении” понятия из двух малосвязанных областей мысли, находить в уже известном сходное с данным, отыскивать сходное в самых отделённых казалось бы, совершенно разнородных предметах.

*быстроту мысли (быстрота мысли объясняется той работой, которую совершает бессознательное мышление в помощь сознательному). Бессознательное мышление, по мнению автора, протекает гораздо быстрее, чем сознательное.

Д.Мордухай-Болтовский высказывает так же свои соображения по поводу типов математического воображения, которые лежат в основе разных типов математиков – “геометров” и “алгебраистов”. Арифметики, алгебраисты и вообще аналитики, у которых открытие производится в самой абстрактной форме прорывных количественных символов и их взаимоотношений, не могут воображать так, как “геометр”.

Советская теория способностей создавалась совместным трудом виднейших отечественных психологов, из которых в первую очередь надо назвать Б.М.Теплова, а так же Л.С.Выготского, А.Н.Леонтьева, С.Л.Рубинштейна и Б.Г.Ананьева.

Помимо общетеоретических исследований проблемы математических способностей, В.А.Крутецкий своей монографией “Психология математических способностей школьников” ( ) положил начало экспериментальному анализу структуры математических способностей.

Под способностями к изучению математики он понимает индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обуславливающие при прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, лёгкое и глубокое овладения знаниями, умениями, навыками в области математики. Д.Н.Богоявленский и Н.А.Менчинская, говоря об индивидуальных различиях в обучаемости детей, вводит понятие психологических свойств, определяющих при прочих равных условиях успех в учении. Они не употребляют термина “способности”, но по существу соответствующее понятие близко к тому определению, которое дано выше.

Математические способности - сложное структурное психическое образование, своеобразный синтез свойств, интегральное качество ума, охватывающее разнообразные его стороны и развивающееся в процессе математической деятельности. Указанная совокупность представляет собой единое качественно-своеобразное целое, - только в целях анализа мы выделяем отдельные компоненты, отнюдь не рассматривая их как изолированные свойства. Эти компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, проявления которой мы условно называем “синдром математической одаренности”.

1.2.1. Структура математических способностей.

Большой вклад в разработку данной проблемы внёс В.А.Крутецкий.

( ) Собранный им экспериментальный материал позволяет говорить о компонентах, занимающих существенное место в структуре такого интегрального качества ума, как математическая одарённость.

Общая схема структуры математических способностей в школьном возрасте

Получение математической информации

А) Способность к формализованному восприятию математического материала, охватыванию формальной структуры задачи.

Переработка математической информации.

А) Способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики. Способность мыслить математическими символами.

Б) Способность к быстрому и широкому обобщению математических объектов, отношений и действий.

В) Способность к свёртыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами.

Г) Гибкость мыслительных процессов в математической деятельности.

К-во Просмотров: 270
Бесплатно скачать Курсовая работа: Взаимосвязь математических способностей и уровня тревожности