Курсовая работа: Жизнь и достижения Нильса Бора

Хотя модель Бора казалась странной и немного мистической, она позволяла решить проблемы, давно озадачивавшие физиков. В частности, она давала ключ к разделению спектров элементов. Когда свет от светящегося элемента (например, раскаленная на огне медная проволока ) проходит через призму, он дает не непрерывный включающий все цвета спектр, а последовательность дискретных ярких линий, разделенных более широкими темными областями. Согласно теории Бора, каждая яркая цветная линия (т.е. каждая отдельная длина волны) соответствует свету, излучаемому электронами, когда они переходят с одной разрешенной орбиты на другую орбиту с более низкой энергией. Бор вывел формулу для частот линий в спектре водорода, в которой содержалась постоянная Планка. Частота, умноженная на постоянную Планка, равна разности энергий между начальной и конечной орбитами, между которыми совершают переход электроны. Теория Бора, опубликованная в 1913 г., принесла ему известность; его модель атома стала известна как атом Бора.

Десять лет спустя Планк говорил, что смелость теории атомного механизма Бора и полнота его разрыва с укоренившимися и якобы надежными воззрениями не имеет себе равных в истории физической науки. Теория Бора блестяще согласовалась с фактами, что как раз и является важнейшей задачей теории. Наряду с несомненным дарованием в «искусстве синтеза» он обнаружил также отчетливое понимание действительности.

В результате того, что Бор ввел во внутриатомную динамику два кажущиеся произвольными постулата о квантах, точное математическое изложение которых было дано Зоммерфельдом, Бор смог построить удовлетворительную модель атома водорода как самого простого атома. «Тогда как первый постулат подчеркивает общую устойчивость атома, второй прежде всего имеет в виду существование спектров, состоящих из резких линий». Так объяснял Бор оба квантовых условия в своем нобелевском докладе.

Действительно, таким образом могли быть объяснены многие основополагающие результаты спектроскопических исследований. Бор смог расшифровать оптическое явление, которое до того не было разгадано: расположение спектральных линий атома водорода, закономерность которого установил в 1885 году швейцарский физик Иоганн Якоб Бальмер.

Бальмер, имевший значительные заслуги в разработке основанного Бунзеном и Кирхгофом спектрального анализа, был первым, кто в эмпирически найденной формуле математически описал расположение спектральных линий, которые испускаются атомом водорода при электрическом разряде или при тепловом движении. Под непосредственным влиянием исследований Штарка по динамике атома Бору удалось убедительно, с точки зрения физики объяснить «серию Бальмера» и с помощью своей атомной модели вывести предложенную Бальмером формулу.

Посредством применения понятия кванта в атомном учении стало возможным решить загадку спектральных линий и по крайней мере в общих чертах объяснить поразительную устойчивость атомов, строение их электронных оболочек и периодическую систему элементов. Теория спектральных линий Бора открыла новую область исследований.

«Большое количество экспериментального материала, полученное спектроскопией в течение нескольких десятилетий, – писал Гейзенберг, – теперь, при изучении квантовых законов движения электронов, стало источником информации. Для той же самой цели могли быть использованы многие эксперименты химиков. Имея дело с этим экспериментальным материалом, физики постепенно научились ставить правильные вопросы. А ведь часто правильно поставленный вопрос означает больше чем наполовину решение проблемы».

Научное достижение 27-летнего датчанина было преобразующим, революционным. Он смог совершить его только потому, что ему не мешала идти вперед консервативная направленность ума, излишнее благоговение перед классическими преданиями. Поэтому Бор, а не Планк стал творцом атомной механики и истинным вождем «квантовых теоретиков».

При этом нельзя, конечно, забывать, что основополагающая идея квантования энергии принадлежит не Бору, а Планку. Бор воспринял ее у Планка: в форме эйнштейновского квантового учения, которое уже в основном выходило за рамки гипотезы Планка. Итак, путь идеи проходил от Планка через Эйнштейна к Бору.

«Полвека спустя введение дискретных квантовых состояний электронной системы атома может показаться чем-то само собой разумеющимся, – говорил Джеймс Франк. – Казалось, если бы Бор не ввел эту идею, то вскоре кто-нибудь другой пришел бы к тому же выводу. Такое мнение в корне ошибочно. Сколько мужества, независимости и сосредоточенности на существенном было необходимо, показывает та медлительность, с которой эта идея находила признание у огромной массы физиков».

Так как планковская квантовая гипотеза в то время еще считалась спорной, не удивительно, что попытка Бора основать модель атома на понятии квантов не имела сначала у физиков большого успеха. Некоторым теория Бора казалась «поразительным гибридом, полученным с помощью прививки некоторых черт квантовой теории, исходящей из представлений о прерывности материи, к теории планетных орбит – типичной классической теории, рассматривающей мир как нечто непрерывное», как писал в автобиографии Норберт Винер, основатель кибернетики.

Резерфорд, несмотря на некоторые сомнения, воспринял модель атома Бора с одобрением; но другие известные физики-атомщики решительно отклонили ее. К их числу относился и английский лауреат Нобелевской премии Дж.Дж. Томсон, который приобрел мировую славу благодаря открытию электрона, а также благодаря другим основополагающим достижениям в области исследования атома и который выдвигал свою модель атома.

Арнольд Зоммерфельд, посвятивший впоследствии все свои силы разработке теории атома Бора, вначале также не хотел ничего знать о применении объяснения «серии Бальмера» к модели атома. В дальнейшем фундаментальные исследования Зоммерфельдом тонкой структуры линий водорода и его расчет возможных орбит электронов с учетом моментов теории относительности способствовали тому грандиозному подъему атомизма, который в значительной степени привел к стиранию границы между физикой и химией. Его труд «Строение атома и спектральные линии» считается классической монографией раннего периода современной теории атома.

«Работа Бора в первые годы после ее появления была мало известна в Германии, – писал Джеймс Франк в статье о Нильсе Боре в «Натурвиссеншафтен» в 1963 году. – Литературу лишь бегло просматривали, и так как в то время среди физиков господствовало откровенное недоверие к успешности попыток сконструировать модель атома при тогдашнем уровне знаний, то мало кто давал себе труд внимательно прочитать работу. Особо следует отметить, что Густав Герц и пишущий эти строки вначале были неспособны понять огромное значение работы Бора». Работы Франка и Герца по возбуждению спектральных линий путем облучения атомов электронами решительным образом поддерживали воровское понимание строения атома и подтверждали это понимание в его основе. Оба физика работали в Физическом институте Берлинского университета.

Оценив важность работы Бора, Резерфорд предложил ему ставку лектора в Манчестерском университете – пост, который Бор занимал с 1914 по 1916 г. В 1916 г. он занял пост профессора, созданный для него в Копенгагенском университете, где он продолжал работать над строением атома. В 1920 г. он основал Институт теоретической физики в Копенгагене; за исключением периода второй мировой войны, когда Бора не было в Дании, он руководил этим институтом до конца своей жизни. Под его руководством институт сыграл ведущую роль в развитии квантовой механики (математическое описание волновых и корпускулярных аспектов материи и энергии). В течение 20-х гг. боровская модель атома была заменена более сложной квантово-механической моделью, основанной главным образом на исследованиях его студентов и коллег. Тем не менее атом Бора сыграл существенную роль моста между миром атомной структуры и миром квантовой теории.

Бор был награжден в 1922 г. Нобелевской премией по физике «за заслуги в исследовании строения атомов и испускаемого ими излучения». При презентации лауреата Сванте Аррениус, член Шведской королевской академии наук, отметил, что открытия Бора «подвели его к теоретическим идеям, которые существенно отличаются от тех, какие лежали в основе классических постулатов Джеймса Клерка Максвелла». Аррениус добавил, что заложенные Бором принципы «обещают обильные плоды в будущих исследованиях».

Последующие несколько лет Бор посвятил детальной разработке квантовой теории атома.

Однако теория не была лишена противоречий. В самом деле: представление о стационарных орбитах электронов опиралось на планковскую теорию, а расчет этих орбит основывался на методах классической механики и электродинамики. Не без юмора заметил в свое время Генри Брэгг: в теории Бора мы "как бы должны по понедельникам, средам и пятницам пользоваться классическими законами, а по вторникам, четвергам и субботам - квантовыми".

Во второй половине 20-х гг. на смену квантовой теории пришла квантовая механика. Бор немало сделал для ее становления и интерпретации.

На заседании Физического общества в Копенгагене 18 октября 1921 г. Бор прочел доклад: "Строение атома и физические и химические свойства элементов", в котором изложил основные положения теории периодической системы. Он объяснял то, перед чем вставал в тупик Дмитрий Иванович Менделеев: глубинные причины периодического изменения свойств. "Последовательность элементов распадается на различные периоды, внутри которых их химические свойства изменяются известным характерным образом, - говорил Бор. - Для истолкования этой закономерности естественно предположить отчетливое распределение электронов в атоме таким образом, что расположение групп элементов в системе следует приписать постепенному образованию электронных групп в атоме по мере увеличения атомного номера".

Эти "электронные группы" Бор назвал "квантовыми орбитами"; несколько позже их станут называть "оболочками" и "подоболочками". Бор далее предложил четкую схему последовательного формирования электронных конфигураций атомов, с тех пор, по существу, не претерпевшую заметных изменений. И иллюстрировал свои представления лестничной формой периодической системы.

Безусловно, схема эта не имела строгого теоретического вывода. Она опиралась на эмпирические факты изменения свойств элементов в таблице Менделеева и на их характеристические рентгеновские спектры. Правильнее сказать, Бор не "вывел" периодической системы, а лишь объяснил ее, пользуясь квантовой моделью строения атома. Для "вывода" же потребовались принципиально новые идеи и методы. Их предоставила квантовая механика.

Бор написал много работ, посвященных проблемам эпистемологии (познания), возникающим в современной физике. В 20-е гг. он сделал решающий вклад в то, что позднее было названо копенгагенской интерпретацией квантовой механики. Основываясь на принципе неопределенности Вернера Гейзенберга, копенгагенская интерпретация исходит из того, что жесткие законы причины и следствия, привычные нам в повседневном, макроскопическом мире, неприменимы к внутриатомным явлениям, которые можно истолковать лишь в вероятностных терминах.

Основные идеи квантовой механики, несмотря на её формальные успехи, в первые годы оставались во многом неясными. Для полного понимания физических основ квантовой механики, её связи с классической физикой был необходим дальнейший глубокий анализ соотношения классического (макроскопического) и квантового (микроскопического - на атомном и субатомном уровнях) материальных объектов, процесса измерения характеристик микрообъекта и вообще физического содержания используемых в теории понятий. Этот анализ потребовал напряжённой работы, в которой ведущую роль сыграл Бор. Его институт стал центром такого рода исследований. Главная идея Бора заключалась в том, что заимствованные из классической физики динамические характеристики микрочастицы (например, электрона) - её координата, импульс (количество движения), энергия и др. - вовсе не присущи частице самой по себе. Смысл и определённое значение той или иной характеристики электрона, например его импульса, раскрываются во взаимосвязи с классическими объектами, для которых эти величины имеют определённый смысл и все одновременно могут иметь определённое значение (такой классический объект условно называется измерительным прибором). Эта идея имеет не только принципиальное физическое, но и философское значение. В результате была создана последовательная, чрезвычайно общая теория, внутренне непротиворечиво объясняющая все известные процессы в микромире для нерелятивистской области (т. е. пока скорости частиц малы по сравнению со скоростью света) и в предельном случае автоматически ведущая к классическим законам и понятиям, когда объект становится макроскопическим. Были также заложены основы релятивистской теории.

Бор также сформулировал два из фундаментальных принципов, определивших развитие квантовой механики: принцип соответствия и принцип дополнительности

Принцип соответствия, который Бор выдвинул еще в 1916 году, означал, что квантовая теория может быть определенным образом согласована с классической теорией, то есть «соответствовать» ей. Классическая механика блестяще подтвердилась не только во всех макрофизических процессах, но также и во всех микрофизических процессах, вплоть до движения атомов как целого, что показала кинетическая теория материи. Итак, новая атомная механика должна была привести в конце концов к тем же результатам, что и классическая. Она должна была асимптотически перейти в классическую механику для крайних случаев больших масс или больших размеров орбит. Если значение элементарного кванта действия h рассматривать как бесконечно малую величину или пренебречь им, то практически будут действовать законы классической физики.

Если, например, электрон в атоме водорода переходит на орбиты, все дальше отстоящие от ядра, и наконец полностью отрывается от него, то законы излучения квантовой механики с большим приближением принимают форму законов классической электродинамики. Принцип соответствия передает, таким образом, связь между двумя противоречащими друг другу теоретическими построениями: микрофизикой и макрофизикой, границы между которыми определяются константой Планка.

Принцип соответствия, в котором старое было смело соединено с новым, оказался очень полезным для приблизительных расчетов интенсивности спектральных линий. Он сыграл большую роль в дальнейшем развитии квантовой физики. «Теоретическая физика жила этой идеей последующие десять лет, – говорил Макс Борн. – ...Искусство угадывания правильных формул, которые отклоняются от классических, но переходят в них, в смысле принципа соответствия было значительно усовершенствовано».

К-во Просмотров: 194
Бесплатно скачать Курсовая работа: Жизнь и достижения Нильса Бора