Лабораторная работа: Паралельні проекції

Ця проекція описується матрицею


Рис. 3 Косокутна рівнобіжна проекція одиничного куба.

Точка Р' є проекцією точки P (0, 0, 1)

Розглянемо тепер косокутну проекцію, матриця якої може бути записана виходячи зі значень a і l (рис. 3). На рис. 3 зображений одиничний куб, спроектований на xy-площину. З малюнка видно, що проекцією точки P (0, 0, 1), що знаходиться на задній стороні' одиничного куба, є точка Р'(l соsа, l sіnа, 0), що належить площині ху. По визначенню це означає, що напрям проектування збігається з відрізком РР', що проходить через ці дві точки (рис. 4). Цей напрям є Р'-Р= (l соsа, l sina, -1). Напрям проектування складає кут р із площиною ху.

Тепер розглянемо довільну точку x, у, z і визначимо її косокутну проекцію (Хр,Ур) на площину ху. На рис. 5 показані два зображення точки і проектор, що рівнобіжний проектору, приведеному на рис.4. Рівняння для x- і y-координат проектора як функцій z мають вид у=mz+b. Вирішуючи два рівняння относительно Хр і Yр, відзначених на рис.5, одержуємо


Матриця розміром 4х4, що виконує ці дії і, отже, описує косокутну проекцію, має вигляд

Застосування матриці приведе до зсуву і наступного проектування об'єкта: площини з постійною координатою z = z1 переносяться в напрямку х на z1*l соsa в напрямку y на z1*l sina і потім проектуються на площину z = 0. Зсув зберігає паралельність прямих, а також кути і відстані в площинах, паралельних осі z.

Рис. 4. Косокутна паралельна проекція Р'(l соsа, l sinа, 0) проекцією точки P (0, 0, 1).

Рис. 5 Косокутна паралельна проекція (Xp, Yp, 0) точки (x, y, z).


Для проекції кавальє l=1, тому кут р, показаний на рис.4.17, складає 45°. Для проекції кабіні l=1/2, а b=агtg (2) =63,4°. У випадку ортографічної проекції l = 0 і b = 90°, тому є окремим випадком .

К-во Просмотров: 111
Бесплатно скачать Лабораторная работа: Паралельні проекції