Научная работа: Звуковой локатор

В чем дело? Не могут же они видеть ушами?

Так зародилось сомнение. Чтобы все это объяснить, нужны были новые эксперименты. Для этого были изготовлены крошечные медные трубочки, полые внутри, которые вставлялись в уши летучих мышей. Но они по-преж­нему спокойно летали, свободно и уверенно лавируя между десятками тон­ких нитей, натянутых в комнате. Зато стоило заткнуть трубочки пробками, как мыши бессильно падали, натыкаясь на все подряд.

Но как слух заменял им зрение? На этот вопрос никто не мог ответить. Мыши летали беззвучно, а стены и натянутые нити звуков не издавали, по­этому отличную ориентацию мышей вовсе нельзя было объяснить обострен­ным чувством слуха. Тогда как же видели летучие мыши? Этого Спаллан­цани так и не узнал. Его открытия в те годы были отвергнуты, высмеяны, а потом и забыты. Осталось только название «спалланцаниева проблема».

В середине прошлого столетия решением этой проблемы ученые заинтересо­вались одновременно в разных странах.

Любопытно, что первый, кто ею занялся, был не зоолог, а инженер — американский изобретатель Хайрем Максим. В годы гражданской войны его фамилией называли станковый пулемет, который он изобрел. Установ­ленный на тачанке «максимка» был грозным оружием против белогвар­дейцев.

Плодовитый изобретатель, пытавшийся, между прочим, в свое время по­строить самолет с паровым двигателем, заинтересовался навигационным ме­тодом летучих мышей. Он предположил, что мыши издают звуки, неслыши­мые для человеческого уха, и ориентируются по возвратившемуся эху. На основании собственной биологической гипотезы Максим предложил новый прибор — эхолокатор, который должен был предотвращать в тумане столкновения судов с айсбергами.

Верная в принципе догадка была все же неточна. Ее автор считал, что первичным сигналом у мышей является звук от взмахов их крыльев. Поэто­му он рекомендовал оборудовать суда источником звука очень низкой часто­ты, порядка 15 Гц. Приемник низкочастотных сигналов предполагалось уста­новить в носовой части корабля. Слабое эхо, по замыслу изобретателя, должно было приводить в действие маленький колокольчик, а сильное — большой гонг, чтобы команда могла судить о серьезности опасности.

Новая идея навигации не привела ни к каким практическим результатам. Ошибка Максима была в том, что он неправильно определил частоту звуко­вого сигнала, на который работал его прибор. Летучие мыши действительно пользуются в полете звуком, но не низких, а очень высоких частот— ультра­звуком.

Другой ученый, голландец Свен Дийграаф, заметил, что летучая мышь прежде, чем пуститься в полет, раскрывает рот. Очевидно, предположил уче­ный, она издает неслышимые для человека звуки и «ощупывает» ими окрест­ности. В полете летучие мыши тоже то и дело раскрывают рот, даже когда не охотятся за насекомыми.

Дийграаф рассуждал так: поскольку стены и предметы, встречающиеся летучей мыши в полете, не издают никаких звуков, значит, кричат сами мыши. Эхо их собственного голоса, отраженное от окружающих предметов, извещает зверьков о препятствии на пути.

Это наблюдение навело ученого на мысль проделать следующий опыт. Он надел на голову зверька бумажный колпак. Спереди, точно забрало рыцар­ского шлема, в колпаке открывалась и закрывалась маленькая дверка. С закрытой дверкой на колпаке мышь совсем не могла лететь и то и дело натыкалась на предметы. Стоило лишь в бумажном колпаке поднять забра­ло, как зверек преображался, его полет вновь становился точным и уве­ренным.

Результаты своих наблюдений Дийграаф опубликовал в 1940 году, а в 1946 году советский ученый Е. Я. Пумпер сделал очень интересное предпо­ложение, которое хорошо объясняет физическую природу эхолокации. Он считал, что летучие мыши каждый новый звук издают сразу же после того, как услышат эхо предыдущего сигнала. Таким образом, ультразвуковые им­пульсы рефлекторно следуют друг за другом, а раздражителем, вызываю­щим их, служит эхо, воспринимаемое ухом.

Значит, чем ближе летучая мышь подлетает к препятствию, тем быстрее возвращается эхо и, следовательно, тем чаще издает зверек новые крики. Наконец, при непосредственном приближении к препятствию ультразвуковые импульсы начинают следовать друг за другом с исключительной быстротой. Это сигнал опасности. Летучая мышь инстинктивно изменяет курс полета, уклоняясь от направления, откуда отраженные звуки приходят слишком быстро.

Дальнейшие опыты показали, что летучая мышь перед стартом издает в секунду лишь 5—10 импульсов. В полете учащает их до 30. При прибли­жении к препятствию ультразвуковые сигналы следуют еще чаще: 50 — 60 раз в секунду. Некоторые мыши во время охоты на ночных насекомых, настигая добычу, издают даже 250 «криков» в секунду.

Но не все звуки, используемые летучими мышами для навигации, совер­шенно не слышны.

Может быть, кому-нибудь из вас случалось теплым вечером наблюдать за полетом мышей и слышать издаваемые ими звуки. Они настолько слабы, что их легко принять за шорох листьев. Очевидно, поэтому-то их Спалланцани и не заметил.

Длительность слабо слышимой части импульсного сигнала весьма мала. Этот звук напоминает тиканье ручных часов. Однако, в отличие от часов, частота тиканья, издаваемого летучей мышью, может заметно изменяться.

Когда летучая мышь летит прямо на удаленное от нее препятствие, то она издает от пяти до двадцати гиканий в секунду. В тех случаях, когда перед ней возникает более сложная навигационная задача, например когда ей нужно избежать столкновения с живым предметом или с палкой, подня­той над головой, можно услышать, что тиканье внезапно учащается, пока не перейдет в слабое жужжание. То же самое происходит перед посадкой летучей мыши. Звуки тиканья при этом настолько слабы, что услышать их можно только в полной тишине и проявив значительное терпение.

Объяснить тайну летучих мышей помогло появление новой электронной аппаратуры. В одной из лабораторий физического факультета Гарвардского университета в США Г.Пирс начал проводить исследования по изучению свойств ультразвуков, т. е. звуков, лежащих выше слухового порога человека. Под его руководством в 1937 г. был создан прибор — звуковой детектор, позволяющий улавливать звуки широкого диапазона частот. Именно этот прибор зарегистрировал неслышимые звуки летучих мышей, когда в 1938 г. студент-биолог упомянутого выше университета Дональд Гриффин принес в лабораторию Пирса полную клетку летучих мышей. Вспоминая об этом, Гриффин писал: «Как только я поднес летучих мышей к аппарату Пирса, сразу же обнаружилось, что они издают множество звуков, но почти все эти звуки попадают в диапазон частот, лежащих выше порога слышимости человека».

Пирс и Гриффин провели частотный анализ звуков, излучаемых летучими мышами в полете, и установили, что частоты этих звуков лежат в диапазоне 30000— 70000 Гц при наибольшей интенсивности в области 45000—50000 Гц. Далее они обнаружили, что животные издают звук не непрерывно, а в виде дискретных импульсов, длительность которых составляет 1/100 – 1/200 с.

Однако установление факта излучения ультразвука летучими мышами, несмотря на всю его важность, еще не объясняло способность животных беспрепятственно летать в полной темноте. Требовалось в условиях точного эксперимента доказать, что летучие мыши действительно используют ультразвук в целях ориентировки в пространстве и что они способны воспринимать эхо от этих звуков, отраженных от встречаемых на пути препятствий. Используя барьеры вертикально натянутых проволок, Гриффин и Галамбос получили количественную оценку способностей летучих мышей преодолевать препятствия при частичном или полном выключении зрения, слуха и при закрывании рта.

Эксперименты Гриффина и Галамбоса вновь подтвердили, что летучие мыши отлично ориентируются и без участия зрительной рецепции, но полное (двустороннее) или частичное (одностороннее) выключение слухового аппарата влечет за собой резкое ухудшение их способностей своевременно обнаруживать и избегать препятствия. Однако в этих опытах авторы пошли дальше своих предшественников. Они показали, что закрывание рта летучей мыши, лишающее ее возможности издавать эти высокочастотные звуки, оказывается столь же эффективным, как и плотное затыкание ее ушей.

Первоначально летучих мышей считали единственными представителями животного мира, использующими эхолокацию в целях ориентировки в пространстве.

Но уже 50-е годы принесли новые неожиданные открытия. В 1953г. звуковая локация была обнаружена у ночных птиц гуахаро, гнездящихся в глубоких пещерах Венесуэлы, а несколько позднее — у стрижей-саланганов, у одного из родов группы крыланов и ластоногих (см. приложения, рисунки 5, 6, 7), некоторых насекомых и грызунов. Но наибольшую сенсацию вызвали сообщения о наличии эхолокации у обитателей водной среды — китообразных (см. приложения, рисунки 8, 9). Честь этого открытия признается за пионером в изучении поведения и биологии дельфинов в неволе, куратором океанариума в Сан-Августино А. Мак-Брайдом.

Использование локации в технике

В туманные декабрьские дни 1943 года из пор­тов Англии вышел большой караван грузовых ко­раблей. Корабли везли военные грузы в один из северных морских портов нашей Родины. У бере­гов вражеская воздушная разведка обнаружила караван. Немцы выслали наперерез англичанам «карманный» линкор «Шарнхорст».

Военные корабли, охранявшие караван, с по­мощью специальной радиоаппаратуры нащупали немецкий линкор и встретили врага огнем. Во мраке полярной ночи стрельба корректировалась по наблюдениям на экранах радиолокационных станций.

«Шарнхорст» попытался уйти от обстрела. Не­сколько раз ему это удавалось. Но радиолуч, спо­собный пройти сквозь тьму и туман, вновь и вновь нащупывал немецкий линкор.

Бой в черноте полярной ночи длился около десяти часов. «Шарнхорст» пошел ко дну...

В том же 1943 году английская эскадра при помощи радио обнаружила в просторах Атлантического океана немецкий линкор «Бисмарк». Из низко нависших туч лил дождь. В этом морском сражении обе стороны применили радиолокационную аппаратуру.

К-во Просмотров: 360
Бесплатно скачать Научная работа: Звуковой локатор