Отчет по практике: Вимірювання лінійних та кутових розмірів
За наведеною схемою будуються мікрометри з порогом чутливості в частки мкм та діапазоном вимірювань 0,1….І мм. Такий мікрометр може використовуватись для вимірювань параметрів шорсткуватості. Однак у цьому випадку можуть виникати значні похибки через деяку нелінійність в перетворенні реального профілю шорсткуватої поверхні в лінійне переміщення щупа. Виникають також похибки через відривання щупа в деяких точках профілю поверхні та внаслідок деформації (пружної та пластичної) досліджуваної поверхні під дією сили з боку щупа. Ці похибки визначаються зусиллям, що створюється щупом.
Це зусилля загалом не є сталим і може змінюватись залежно від інерційності перетворювача, радіуса щупа, властивостей матеріалу та характера профілю досліджуваної поверхні. В цьому відношенні перевагу має віброконтактний метод, оснований на перетворенні в електричний сигнал коливань вібруючого щупа.
Віброконтактний метод дає змогу здійснювати вимірювання при незначних зусиллях щупа, який тільки періодично торкається досліджуваного об'єкта. Завдяки цьому можна використати тонкі щупи, що дає можливість вимірювати розміри деталей, що легко деформуються, а також об'єктів складної конфігурації.
Подібними за своєю конструкцією та вимірювальним колом є індуктивні мікрометри-профілометри, в яких вимірювальний щуп у своїй верхній частині має закріплений феритовий стержень, котрий при переміщенні штока змінює індуктивність вимірювапьної котушки. Котушка, індуктивність якої є функцією вимірюваного переміщення , становить частотнозалежний елемент -генератора.
Якщо частина опорного генератора
а частота вимірювального генератора
то
Мікрометри-профілометри з індуктивним первинним перетворювачем дають змогу вимірювати мікронерівності від 0,1 мкм, а верхня границя вимірювань становить звичайно декілька мм.
Здебільшого в приладо – та машинобудуванні необхідно вимірювати не все значення розміру, яке може досягати десятків см і більше, а лише його відхилення від деякого заданого значення, оскільки в процесі виготовлення деталі контролюється її розмір. Ці відхилення звичайно не перевищують часток мм, а отже, названі мікрометри можуть бути застосовані для цих потреб.
Рис. 2 Ємнісний штангенциркуль та приклади його вимірювальних кіл
Для вимірювань розмірів у діапазоні часток міліметра до декількох сантиметрів застосовують штангенциркуль (рисунок 2, а) з довгоходовим щупом 1 та ємнісним перетворювачем переміщень. Останній складається з циліндричних зовнішнього 2 та внутрішнього 3 електродів і екрана 4 з електропровідного матеріалу, з'єднаного механічно з вимірювальним щупом. При переміщенні екрана ємність вимірювального конденсатора буде змінюватись пропорційно вимірюваному переміщенню. Для виключення впливу довкілля на результат вимірювань передбачений компенсуючий конденсатор, ємність Ск якого дорівнює ємності вимірювального конденсатора при х=0. Приклади електричних вимірювальних кіл такого штангенциркуля наведені на рисунках 2, б, в.
Електрофізичні методи застосовують звичайно у вимірювачах товщини шару покрить та тонких листових виробів.
Список літератури
1.Поліщук Є.С., Дорожовець М.М., Яцук В.О. та ін. Метрологія та вимірювальна техніка: Підручник / Є.С. Поліщук, М.М. Дорожовець,
В.О. Яцук, В.М. Ванько, Т.Г. Бойко; За ред. проф. Є.С. Поліщука. – Львів: Видавництво «Бескид Біт», 2003. – 544 с.
2.Поліщук Є.С. Методи та засоби вимірювань неелектричних величин. – Львів: Видавництво НУ «Львівська політехніка», 2000. – 360 с.
3.Евтихиев Н.Н., Купершмидт Я.А. и др. Измерения электрических и неэлектрических величин. – М.: Энергоиздат, 1990. – 352 с.