Реферат: Альтернативные источники электроэнергии

В приливных электростанциях двустороннего действия турбины работают при движении воды из моря в бассейн и обратно. ПЭС двустороннего действия способна вырабатывать электроэнергию непрерывно в течение 4-5 ч с перерывами в 1-2 ч четыре раза в сутки. Для увеличения времени работы турбин существуют более сложные схемы – с двумя, тремя и большим количеством бассейнов, однако стоимость таких проектов весьма высока.

Первая приливная электростанция мощностью 240 МВт была пущена в 1966 г. во Франции в устье реки Ранс, впадающей в Ла-Манш, где средняя амплитуда приливов составляет 8,4 м. 24 гидроагрегата ПЭС вырабатывают в среднем за год 502 млн. кВт. час электроэнергии. Для этой станции разработан приливный капсульный агрегат, позволяющий осуществлять три прямых и три обратных режима работы: как генератор, как насос и как водопропускное отверстие, что обеспечивает эффективную эксплуатацию ПЭС. По оценкам специалистов, ПЭС на реке Ранс экономически оправдана, годовые издержки эксплуатации ниже, чем на гидроэлектростанциях, и составляют 4% капитальных вложений. Электростанция входит в энергосистему Франции и эффективно используется.

В 1968 г. на Баренцевом море, неда­леко от Мурманска, вступила в строй опытно-промышленная ПЭС проектной мощностью 800 кВт. Место ее строитель­ства – Кислая Губа представляет собой уз­кий залив шириной 150 м и длиной 450 м. Хотя мощность Кислогубской ПЭС неве­лика, ее сооружение имело важное значение для дальнейших исследовательских и про­ектно-конструкторских работ в области ис­пользования энергии приливов.

Существуют проекты крупных ПЭС мощностью 320 МВт (Кольская) и 4000 МВт (Мезенская) на Белом море, где амплитуда приливов составляет 7-10 м. Планируется использовать также огромный потенциал Охотского моря, где местами, например на Пенжинской губе, высота приливов составляет 12,9 м, а в Гижигинской губе – 12-14 м.

Работы в этой области ведутся и за рубежом. В 1985 г. пущена в эксплуатацию ПЭС в заливе Фанди в Канаде мощностью 20 МВт (амплитуда приливов здесь составляет 19,6 м). В Китае построены три приливные электростанции небольшой мощности. В Великобритании разрабатывается проект ПЭС мощностью 1000 МВт в устье реки Северн, где средняя амплитуда приливов составляет 16,3 м

С точки зрения экологии ПЭС имеет бесспорное преимущество перед тепловыми электростанциями, сжигающими нефть и каменный уголь. Благоприятные предпосылки для более широкого использования энергии морских приливов связаны с возможностью применения недавно созданной трубы Горлова, которая позволяет сооружать ПЭС без плотин, сокращая расходы на их строительство. Первые бесплотинные ПЭС намечено соорудить в ближайшие годы в Южной Корее.

Энергия волн

Идея получения электроэнергии от морских волн была изложена еще в 1935 г. советским ученым К.Э. Циолковским.

В основе работы волновых энергетических станций лежит воздействие волн на рабочие органы, выполненные в виде поплавков, маятников, лопастей, оболочек и т.п. Механическая энергия их перемещений с помощью электрогенераторов преобразуется в электрическую. Когда буй качается по волне, уровень воды внутри него меняется. От этого воздух то выходит из него, то входит. Но движение воздуха возможно только лишь через верхнее отверстие (такова конструкция буя). А там установлена турбина, вращающаяся всегда в одном направлении независимо от того в каком направлении движется воздух. Даже довольно небольшие волны высотой 35 см заставляют турбину развивать более 2000 оборотов в минуту. Другой тип установки – что-то вроде стационарной микроэлектростанции. Внешне она похожа на ящик, установленный на опорах на небольшой глубине. Волны проникают в ящик и приводят в действие турбину. И здесь для работы достаточно совсем небольшого волнения моря. Даже волны высотой в 20 см зажигали лампочки общей мощностью 200 Вт.

В настоящее время волноэнергетические установки используются для энергопитания автономных буев, маяков, научных приборов. Попутно крупные волновые станции могут быть использованы для волнозащиты морских буровых платформ, открытых рейдов, марикультурных хозяйств. Началось промышленное использование волновой энергии. В мире уже около 400 маяков и навигационных буев получают питание от волновых установок. В Индии от волновой энергии работает плавучий маяк порта Мадрас. В Норвегии с 1985 г. действует первая в мире промышленная волновая станция мощностью 850 кВт.

Создание волновых электростанций определяется оптимальным выбором акватории океана с устойчивым запасом волновой энергии, эффективной конструкцией станции, в которую встроены устройства сглаживания неравномерного режима волнения. Считается, что эффективно волновые станции могут работать при использовании мощности около 80 кВт/м. Опыт эксплуатации существующих установок показал, что вырабатываемая ими электроэнергия пока в 2-3 раза дороже традиционной, но в будущем ожидается значительное снижение ее стоимости.

В волновых установках с пневматическими преобразователями под действием волн воздушный поток периодически изменяет свое направление на обратное. Для этих условий и разработана турбина Уэллса, ротор которой обладает выпрямляющим действием, сохраняя неизменным направление своего вращения при смене направления воздушного потока, следовательно, поддерживается неизменным и направление вращения генератора. Турбина нашла широкое применение в различных волноэнергетических установках.

Волновая энергетическая установка "Каймей" ("Морской свет") – самая мощная действующая энергетическая установка с пневматическими преобразователями – построена в Японии в 1976 г. В своей работе она использует волны высотой до 6 – 10 м. На барже длиной 80 м, шириной 12 м и водоизмещением 500 т установлены 22 воздушных камеры, открытые снизу. Каждая пара камер работает на одну турбину Уэллса. Общая мощность установки 1000 кВт. Первые испытания были проведены в 1978 – 1979 гг. близ города Цуруока. Энергия передавалась на берег по подводному кабелю длиной около 3 км.

В 1985 г. в Норвегии в 46 км к северо-западу от города Берген построена промышленная волновая станция, состоящая из двух установок. Первая установка на острове Тофтесталлен работала по пневматическому принципу. Она представляла собой железобетонную камеру, заглубленную в скале; над ней была установлена стальная башня высотой 12,3 мм и диаметром 3,6 м. Входящие в камеру волны создавали изменение объема воздуха. Возникающий поток через систему клапанов приводил во вращение турбину и связанный с ней генератор мощностью 500 кВт, годовая выработка составляла 1,2 млн. кВт. ч. Зимним штормом в конце 1988 г. башня станции была разрушена. Разрабатывается проект новой башни из железобетона.

Конструкция второй установки состоит из конусовидного канала в ущелье длиной около 170 м с бетонными стенками высотой 15 м и шириной в основании 55 м, входящего в резервуар между островами, отделенный от моря дамбами, и плотины с энергетической установкой. Волны, проходя по сужающемуся каналу, увеличивают свою высоту с 1,1 до 15 м и вливаются в резервуар, уровень которого на 3 м выше уровня моря. Из резервуара вода проходит через низконапорные гидротурбины мощностью 350 кВт. Станция ежегодно производит до 2 млн. кВт.·ч электроэнергии.

А в Великобритании разрабатывается оригинальная конструкция волновой энергетической установки типа "моллюск", в которой в качестве рабочих органов используются мягкие оболочки – камеры. В них находится воздух под давлением, несколько большим атмосферного. Накатом волн камеры сжимаются, образуется замкнутый воздушный поток из камер в каркас установки и обратно. На пути потока установлены воздушные турбины Уэллса с электрогенераторами. Сейчас создается опытная плавучая установка из 6 камер, укрепленных на каркасе длиной 120 м и высотой 8 м. Ожидаемая мощность 500 кВт. Дальнейшие разработки показали, что наибольший эффект дает расположение камер по кругу. В Шотландии на озере Лох-Несс была испытана установка, состоящая из 12 камер и 8 турбин. Теоретическая мощность такой установки до 1200 кВт.

Впервые конструкция волнового плота была запатентована в СССР еще в 1926 г. В 1978 г. в Великобритании проводились испытания опытных моделей океанских электростанций, в основе которых лежит аналогичное решение. Волновой плот Коккерела состоит из шарнирно соединенных секций, перемещение которых относительно друг друга передается насосам с электрогенераторами. Вся конструкция удерживается на месте якорями. Трехсекционный волновой плот Коккерела длиной 100 м, шириной 50 м и высотой 10 м может дать мощность до 2 тыс. кВт.

В СССР модель волнового плота испытывалась в 70-х гг. на Черном море. Она имела длину 12 м, ширину поплавков 0,4 м. На волнах высотой 0,5 м и длиной 10 – 15 м установка развивала мощность 150 кВт.

Проект, известный под названием "утка Солтера", представляет собой преобразователь волновой энергии. Рабочей конструкцией является поплавок ("утка"), профиль которого рассчитан по законам гидродинамики. В проекте предусматривается монтаж большого количества крупных поплавков, последовательно укрепленных на общем валу. Под действием волн поплавки приходят в движение и возвращаются в исходное положение силой собственного веса. При этом приводятся в действие насосы внутри вала, заполненного специально подготовленной водой. Через систему труб различного диаметра создается разность давления, приводящая в движение турбины, установленные между поплавками и поднятые над поверхностью моря. Вырабатываемая электроэнергия передается по подводному кабелю. Для более эффективного распределения нагрузок на валу следует устанавливать 20 – 30 поплавков. В 1978 г. была испытана модель установки, состоявшая из 20-ти поплавков диаметром 1 м. Выработанная мощность составили 10 кВт. Разработан проект более мощной установки из 20 – 30 поплавков диаметром 15 м, укрепленных на валу, длиной 1200 м. Предполагаемая мощность установки 45 тыс. кВт. Подобные системы, установленные у западных берегов Британских островов, могут обеспечить потребности Великобритании в электроэнергии.

Энергия течений

Наиболее мощные течения океана – потенциальный источник энергии. Современный уровень техники позволяет извлекать энергию течений при скорости потока более 1 м/с. При этом мощность от 1 м2 поперечного сечения потока составляет около 1 кВт. Перспективным представляется использование таких мощных течений, как Гольфстрим и Куросио, несущих соответственно 83 и 55 млн. куб.м/с воды со скоростью до 2 м/с, и Флоридского течения (30 млн. куб.м/с, скорость до 1,8 м/с).

Для океанской энергетики представляют интерес течения в проливах Гибралтарском, Ла-Манш, Курильских. Однако создание океанских электростанций на энергии течений связано пока с рядом технических трудностей, прежде всего с созданием энергетических установок больших размеров, представляющих угрозу судоходству.

Программа "Кориолис" предусматривает установку во Флоридском проливе в 30 км восточнее города Майами 242 турбин с двумя рабочими колесами диаметром 168 м, вращающимися в противоположных направлениях. Пара рабочих колес размещается внутри полой камеры из алюминия, обеспечивающей плавучесть турбины. Для повышения эффективности лопасти колес предполагается сделать достаточно гибкими. Вся система "Кориолис" общей длиной 60 км будет ориентирована по основному потоку; ширина ее при расположении турбин в 22 ряда по 11 турбин в каждом составит 30 км. Агрегаты предполагается отбуксировать к месту установки и заглубить на 30 м, чтобы не препятствовать судоходству.

После того как большая часть Южного Пассатного течения проникает в Карибское море и Мексиканский залив, вода возвращается оттуда в Атлантику через Флоридский залив. Ширина течения становится минимальной – 80 км. При этом оно убыстряет свое движение до 2 м/с. Когда же Флоридское течение усиливается Антильским, расход воды достигает максимума. Развивается сила, вполне достаточная, чтобы привести в движение турбину с размашистыми лопастями, вал которой соединен с электрогенератором. Дальше – передача тока по подводному кабелю на берег.

Материал турбины- алюминий. Срок службы – 80 лет. Ее постоянное место – под водой. Подъем на поверхность воды только для профилактического ремонта. Ее работа практически не зависит от глубины погружения и температуры воды. Лопасти вращаются медленно, и небольшие рыбы могут свободно проплывать через турбину. А вот крупным вход закрыт предохранительной сеткой.

Американские инженеры, считают, что строительство такого сооружения даже дешевле, чем возведение тепловых электростанций. Здесь не нужно возводить здание, прокладывать дороги, устраивать склады. Да и эксплуатационные расходы существенно меньше.

Полезная мощность каждой турбины с учетом затрат на эксплуатацию и потерь при передаче на берег составит 43 МВт, что позволит удовлетворить потребности штата Флориды (США) на 10%.

Первый опытный образец подобной турбины диаметром 1,5 м был испытан во Флоридском проливе. Разработан также проект турбины с рабочим колесом диаметром 12 м и мощностью 400 кВт.

Энергия ветра

К-во Просмотров: 311
Бесплатно скачать Реферат: Альтернативные источники электроэнергии