Реферат: Анализ и технологическая оценка химического производства

Кислоту перевозят и хранят в гуммироваявых стальных цистер­нах и контейнерах, в фаолитовых баках и контейнерах и в емкостях, изготовленных из керамики и стекла При введении в кислоту 1—3% ингибитора активность НС1 к стали снижается в 150—200 раз, поэтому ингибиторную кислоту перевозят в стальных нефутерованных цистернах.

2.Производство азотной кислоты

Безводная азотная кислота HNO3 —тяжелая бесцветная жидкость плотностью 1520 кг/м3 (при 15° С). Она замерзает при темпе­ратуре —47° С и кипит при 85° С, При кипении HNO3 частично разла­гается с выделением двуокиси азота. С водой HNO3 смешивается в любых соотношениях, выделяя тепло, а с двуокисью азота образует нитроолеум.


????????????????? ??????? ?? ????????? ? ?????????, ?????? ? ???????????, ??????? ?????????? ??? ????????? ??????? ??????? ??????? ?? xpo??????????? ??????, ???????? ??? ?? ?????, ???????????? ?????????????? ?????????.

Получение слабой азотной кислоты имеет две стадии;

а) окисление аммиака до окиси азота N0;

б) переработка N0 в азотную кислоту.

Окисление аммиака проводятся при температуре 800—900°С в присутствии катализатора, изготовленного из сплава платины н родия (5—10%) в виде сеток, сплетённых из тонкой проволоки. Кроме пла­тины, могут применяться менее активные катализаторы на основе окиси кобальта или железа с активирующими добавками. Аммиак может окисляться при 900°С и безкатализатора, но в этом случае получаетсяне окись азота, а азот:

4NH3 + 3О2 = 2N3 + 6Н2 0 + Q.

Катализаторы очень чувствительны к примесям сероводорода, пыли и т, д., поэ­тому воздух перед смешением с аммиаком тщательно очищается. На рис. 2 показана схема контактного аппарата для окисления аммиака под атмосферным давлением. Аппа­рат имеет корпус цилиндрической формы в ней закреплены платино-радиовые сотки (3—4 шт.) и поролитовые трубки (из порис­той керамики) для очистки воздушко-амиачной смеси от пыли. Для получения окиси азота в контактный аппарат подают смесь, содержащую 10—11%. По­вышать содержание амиака нельзя, так как при 20° С смесь с содержанием 15—28% NH3 становится взрывоопасной. При прохождении cmcеcи через платиновые сетки аммиак окисляется с образованием N0. Степень окисления аммиака составляет 98%.

Контактные аппараты, работающие под давлением 1,5—10 am (9,81•104 н/м2 ), мало отличаются от описанных выше, но в них имеется 16—20 сеток и аппаратура более толстостенная.

Переработка окиси азота в разбавленную азотную кислоту осуществляется следующим образом. Выходящие из контактного аппара­та нитрозные газы охлаждаются, и окись азота N0 окисляется самопроизвольно кислородом:

2NO +О2 - > 2NO2 + Q.

Окисление NO в NO2 происходит очень медленно. Для увеличения скорости окисления необходимо понижать температуру (реакция аномальная, скорость растет при снижении температуры в отличие от других реакции) и испытать дарение (при увеличении давления с 1 до 10 am скорость возрастает в 100U раз). Поэтому окисление N0 в N02 и абсорбцию NO2 часто происходит в установках, работающих под давлением 1,5—10 am (0,15—1 Мн/м2 ), что резко сокращает объемы окислительно-абсорбционных башен.

Абсорбция двуокиси азота осуществляетсяводой по суммарному уравнению

3NO2 + Н2 О - > 2НNО3 + NO + Q.


?????? ?????? ????? ?????????? ?? ??????? ??????.

На рис. 3 показана принципиальная схема получения азотной кислоты при атмосферном давлении. Воздух и аммиак после очистки от примесей подаются в смеситель1, а затем в контактный аппарат 2. Для окисления амиака. Образовавшиеся нитрозные газы при темпе­ратуре 800°С выходят из аппарата и, пройдя котел-утилизатор 3, oхлаждаются до 250°С и поступают в кожухотрубный холодильник4, где дополнительно охлаждаются до 30° С, В холодильнике начитают­ся окисление N0 до NO2 и конденсация пapoв, воды, при этом частично образуется HNO3

Из холодильника нитрозные газы направляются в абсорбционные насадочные башни 5, в которых окислы азота поглощаются водой; таких башен в системе б—8 шт. Прейдя последовательно через эти башни, газы поступают в окислительную башню б, где оставшаяся часть N0 окисляется в NO2 и затем а башни щелочной абсорбции 7. Для поглощения N0 последняя башня орошается водой. Образовавшаяся слабая кислота охлаждается в холодильниках 8 и с помощью насосов 9 проходит последовательно противотоком газу все поглотительные башни. Кислота (50% HNO3 ) выводится из первой по ходу газа башни. Степень переработки окислов азота в азотную кислоту составляет 92%, а остальные окислы азота улавливаются в башнях щелочной абсорбции.

В установках, работающих под давлением 1,5—10 am (0,15— 1 Мн/м2 } и по комбинированной схеме, степень поглощения окислов азота водой составляет 99%, а получаемая кислота более крепкая — 60—62%.

3. Производство серной кислоты

Моногидрат— серная кислота (100% H2 SO4 ) представляет собой бесцветную маслянистую жидкость плотностью 1830,3 кг/м3 , кипящую при 296,2s С и атмосферном давлении и замерзающуюпри+10,45° С.

В технике серной кислотой называют не только моногидрат, но и растворы его в воде различной концентрации H2 SO4 2 0. Раствор серного ангидрида SO4 в моногидрате называют олеумом H2 SO4 + SO3 .При применении, транспортировке и производстве необходимо знать температуры плавления и кипения серной кислоты. При повышении концентрации серной кислоты от 0 до 64,35° до 100% образуются шесть индивидуальных химических соединений (гидратов), которые в твердом виде взаимно нерастворимы, а образуют эвтектические смеси.

С увеличением концентрацииSO3 от 64,35% до 100% при кристаллизации образуются твердые растворы. Все сорта выпускаемой кислоты имеют концентрации, близкие к эвтектическим смесям, т. ё. концентрации, имеющие низкие температуры кристаллизации. На­пример, 75%-ная, 93,3%-ная серная кислота, олеум (SO3своб = 18,07%) имеют температуры кристаллизации, равные соответственно—41; —37,85; —17,05 G.

Серная кислота находит широкое применение в промышленности. Примерно половина производимой серной кислоты расходуется на производство удобрений и кислот. Она применяется для травления стальных изделий перед лужением, хромированием и т.п. очистки нефтепродуктов от непредельных и сернистых соединений, для производства ряда красителей, лаков и красок, лекарственных веществ, некоторых пластмасс, спиртов, ядохимикатов, синтетических мою­щих средств, искусственного шелка, в текстильной промышленности для обработки тканей или волокна перед крашением, а также дли про­изводства крахмала, патоки и т. д.

Концентрированная серная кислота и олеум используют как водоотнимающее средства при производстве взрывчатых веществ (нитро­глицерина, пироксила, тротила и др.). концентрировании азотной кислоты и т. д.

В связи с дальнейшим развитием промышленности и совершенство техники возникают новые отрасли потребления серной кис­лоты, поэтому ее производство с каждым годом растет (табл. 1).

Таблица 1 Производство серной кислоты в СНГ (в млн. т)

В промышленности серную кислоту получают нитрозным иконтактным способами. Независимо от способа производства сначала по­лучают сернистый ангидрид SO2 , который затем перерабатывают в серную кислоту.

4. Производство полимеров

К-во Просмотров: 564
Бесплатно скачать Реферат: Анализ и технологическая оценка химического производства