Реферат: Аналоговые импульсные вольтметры
С помощью вольтметров компенсационного типа можно также измерять амплитудное значение синусоидального напряжения и напряжение постоянного тока. Погрешность определяется чувствительностью указателя компенсации — гальванометра и точностью установки и измерения образцового напряжения. Для этой цели часто применяют цифровые вольтметры. Для измерения очень коротких импульсов разработаны более совершенные вольтметры с автокомпенсацией (рис, 7). Принцип автокомпенсации заключается в преобразовании измеряемого напряжения в компенсирующее с последующим точным измерением его значения.
Входной импульс через диод Д заряжает конденсатор до значения
, что обеспечивается малой постоянной времени цепи заряда
соизмеримой с длительностью импульса
(емкость конденсатора
— единицы пикофарад). На конденсаторе С2 образуется напряжение UC 2 , которое через резистор
поступает на конденсатор
в качестве компенсирующего. Элементы нагрузки второго детектора
и
выбираются так, чтобы их постоянная времени была много большей длительности периода следования измеряемых импульсов:
. Конденсатор С2 в интервалах между импульсами разряжается незначительно. На вход усилителя У поступает разность напряжений
; выходное напряжение усилителя детектируется и подзаряжает конденсатор С2 . Чем больше коэффициент усиления усилителя, тем ближе значение
к
. Напряжение
измеряется цифровым вольтметром постоянного тока ЦВ.
Преимущества автокомпенсационных вольтметров заключаются в отсутствии индикатора момента компенсации — гальванометра и источника образцового напряжения, а также в уменьшении погрешности измерения.
5. Расчет делителя
Пределы измерения выбираются кнопочным переключателем путем включения соответствующего резистора R 8 (рис.8) в цепь питания стрелочного прибора (микроамперметра).
Рис.8. Схема выбора пределов измерения.
Делитель 1:10 напряжения смешанного типа представлен на рис. 9:
Рис.9. Делитель напряжения.
Для расчета делителя напряжения 1:10 запишем соотношение для коэффициента преобразования:
,
- комплексные сопротивления ветвей с параллельными
,
и
,
. Для того чтобы
был частотно-независимым, надо чтобы выполнялось условие:
, если это выполнено, то получим:
.
Тогда для делителя 1:10 получим:
.
Примем ,
. А для емкостей получим:
. Примем
, тогда
6. Пределы измерений
Прибор имеет четыре предела измерения амплитуды импульсов: 2, 5, 10 и 20 В.
7. Погрешности
Погрешность измерения амплитуды исследуемого напряжения определяется разрядом конденсатора за период измеряемого напряжения:
,
где Т — период измеряемого сигнала; — постоянная времени цепи разряда.
Относительная погрешность измерения считая, что
получаем:
или с учетом разложения в ряд функции:
,
ограничиваясь первыми двумя членами ряда, имеем:
,
Где - частота
Из выражения следует, что погрешность тем больше, чем ниже частота измеряемого напряжения. Основная погрешность связана с частотой следования импульсов. Дополнительная связана со скважностью импульсов и их длительностью.
Выводы
Используя электронную схему регистрации напряжения при помощи амплитудного преобразователя с открытым или с закрытым входом можно измерить пиковое напряжение, что позволяет измерять импульсные напряжения.
Измерение импульсных напряжений при помощи компенсационных и автокомпенсационных вольтметров позволяет достичь большей точности.