Реферат: Апология Бесконечности в связи с парадоксом "Лжец"

либо одним, эквивалентным этим двум, высказыванием вида

(Я=((Я=Л)=Л)).

Как первая, так и вторая записи являются тождественно-истинными высказываниями. В переводе на естественный язык это высказывание звучит следующим образом: первая ипостась: если ты лжец (субъект Я=Л) и говоришь "Я лгу" или "Я – лжец" – (Я=Л), что является правдой – (Я=Л)=(Л=Л)=И, то ты, называя истину ложью, в самом деле лжец – (Я=((Я=Л)=Л))=(Я=(И=Л))=(Я=Л); вторая ипостась: если ты не лжец (субъект Я=И) и говоришь "Я лгу" или "Я – лжец" – (Я=Л), что является ложью – (Я=Л)=(И=Л)=Л, то ты, называя ложь ложью, в самом деле не лжец – (Я=((Я=Л)=Л))=(Я=(Л=Л))=(Я=И).

Таким образом, если самоприменимость вместе с отрицанием используется без нарушения законов классической логики, то никакого парадокса в общепринятом смысле в данном случае нет. Если же утверждается, что в каком-либо языке, например, в семантически замкнутом языке [9, с. 27], можно построить высказывательную форму Я=(Я=Л), то надо исследовать основания этого языка на предмет нарушения в нем законов классической логики.

Представим теперь действительное положение вещей с кибернетическим моделированием парадокса "Лжец". Кибернетическим моделирование названо потому, что в основе кибернетики лежит обратная связь, а самоприменимость – это тоже обратная связь. Кроме этого, сделаем небольшое замечание к моделируемому объекту. В работе [2] нет четкого определения этого объекта. С одной стороны, много говорится о том, что моделируется логическое доказательство парадоксальности самоприменимого высказывания, хотя так и остается неясным – как на модели, или на блоке логического доказательства ΣЛ, получается доказательство в виде конечной последовательности (4) (см. с. 85). С другой стороны, говорится, что «в рамках ... нового физического парадокса была построена изоморфная модель парадокса "Лжеца"» (с. 83), а затем вся статья заканчивается параграфом «Моделирование "ЛЖЕЦА"». Подобная двусмысленность есть продолжение смешения языков. У нас же речь будет идти строго о моделировании парадокса "Лжец", а все выводы, то есть доказательства, будут делаться по результатам моделирования на естественном языке при строгом соблюдении законов классической логики.

Сразу же заметим, что этот парадокс работает на человечество уже более полувека. Он лежит в самих субстратных основах всей цифровой вычислительной техники – этого ядра современных информационных технологий. Правда, сама эта техника и информационные технологии не осознают данного факта. И это, наверное, соответствует истинному положению вещей – парадокса на самом деле нет. Если бы он был в действительности, то вряд ли бы вычислительная техника породила современные информационные технологии и позволила получать адекватные результаты. Можно сказать, что практика не подтверждает существование парадокса "Лжец" как логического противоречия.

Рассмотрим три ипостаси кибернетической модели парадокса "Лжец": идеальную, реальную и истинную. Начнем с идеальной модели.

Субстратной основой цифровой вычислительной техники является тот или иной функционально полный набор логических элементов, или операций. В частности, таким набором может быть набор из двух элементов – элемента НЕ (логического инвертора) и конъюнктора &. Из этих элементов могут строиться любые цифровые устройства для переработки информации. Нас интересует элемент НЕ. Он имеет один вход x и один выход y и выполняет логическую операцию отрицания: y=неx. Поскольку рассматривается идеальная ипостась модели парадокса, то инвертор полагается идеальным, то есть таким, в котором информация со входа на выход проходит без задержек. Легко видеть, что если соединить выход y инвертора НЕ с его входом x, то такой инвертор (инвертор с обратной связью) будет моделировать парадокс "Лжец" в форме Я=(Я=Л)=неЯ. Действительно, инвертор с обратной связью реализует функцию y=неy, а при y=Я он моделирует функцию лжеца Я=неЯ. Это идеальная ипостась модели. В цифровой вычислительной технике проверку схем на правильность их функционирования проводят путем их моделирования. В правильной схеме все ее элементы показывают на своих выходах уровни логических нулей 0 и единиц Е. Одним из уровней сигналов, указывающих на ошибки в схеме, является уровень неопределенности Н. Этот уровень является результатом соединения выходов двух (и более) логических элементов между собой, когда на выходе одного логического элемента имеет место уровень логической единицы, а на выходе другого – уровень логического нуля. Так вот, идеальный инвертор с обратной связью показывает на своем выходе y тот же сигнал ошибки Н. Как это может быть? А может это быть следующим образом. При очень детализированном рассмотрении процесса перехода инвертора из одного логического состояния в другое операция инвертирования входного сигнала x протекает по закону инвертирования в многозначной логике: y=неx=Е-x. Здесь запись Е-x означает обычное арифметическое вычитание. При этом все многозначные логические уровни заключены между Е и 0. В двузначной логике, как мы уже говорили, уровню Е сопоставляется логическая 1, а уровню 0 – логический 0. Если на входе xсигнал x пробегает все значения от 0 до Е, то на выходе y в то же самое время сигнал y=Е-x пробегает значения от Е-0=Е до Е-Е=0. В инверторе с обратной связью на выходе устанавливается сигнал y=неy=Е-y=> y=Е/2. Именно этот сигнал и является сигналом ошибки Н=Е/2, поскольку он является средним значением сигналов y1=Е и y2=0 на соединенных друг с другом выходах двух элементов: (y1+y2)/2=(Е+0)/2=Н. Таким образом, идеальная модель парадокса "Лжец" в форме Я=(Я=Л) показывает, что эта форма является ошибочной. данный результат согласуется с классической логикой и подтверждает наш вывод о неадекватности этой высказывательной формы.

Перейдем к реальной модели парадокса "Лжец". В идеальной модели использовался идеальный логический инвертор, в котором как время прохождения сигнала со входа на выход, так и время перехода из одного состояния в другое были равны нулю. В реальном инверторе эти времена отличны от нуля. Закон функционирования реального инвертора получают посредством замещения реального инвертора его эквивалентом. Одним из таких эквивалентов является схема, состоящая из элемента задержки входного сигнала x на время dtи идеального инвертора. Для наших целей достаточно именно этого эквивалента. Его функционирование описывается простым выражением y(t)=неx(t-dt). Кроме этого, нам удобно рассматривать функционирование реального инвертора, полагая временную задержку dt единичной, а само время дискретным. Тогда вместо y(t) можно писать yi, а вместо x(t-dt) – xi-1. Соответственно реальный инвертор будет моделировать зависимость yi=неxi-1. Соединив выход y такого инвертора с его входом x, получим для его закона функционирования зависимость yi=неyi-1. Это и есть реальная модель парадокса "Лжец". Действительно, сначала мы замечаем, что, полагая y=Я, будем иметь Яi=неЯi-1. Затем вспомнив, что выше, рассматривая истинное положение вещей в отношении парадокса "Лжец", мы дали правильное его описание: получив соотношения Я1=(Я=Л)=неЯ, Я2=(Я1=Л)=неЯ1, мы остановились и заметили, что Я2=неЯ1=не(неЯ)=Я. Здесь же мы не будем останавливаться на этом, а продолжим описание самоприменимости с одновременным утверждением лжи о себе, а именно: Я3=(Я2=Л)=неЯ2, Я4=(Я3=Л)=неЯ3, ..., Яi=(Яi-1=Л)=неЯi-1, ... . нетрудно видеть, что именно эту последовательность и моделирует реальный инвертор с обратной связью. Причем, все четные ее высказывания Я2, ..., Я2n, ... тождественны самому субъекту Я, а нечетные – Я1, Я3, ..., Я2n+1, ... – его отрицанию неЯ, то есть на самом деле имеет место последо?

К-во Просмотров: 154
Бесплатно скачать Реферат: Апология Бесконечности в связи с парадоксом "Лжец"