Реферат: Базы данных и их сравнительные характеристики

Отношения в иерархической модели данных организованы в виде совокупностей деревьев, где дерево - структура данных, в которой тип сегмента потомка связан только с одним типом сегмента предка. Графически: Предок - точка на конце стрелки, а Потомок - точка на острие стрелки. В базах данных определено, что точки - это типы записей, а стрелки представляют отношения один - к - одному или один - ко - многим.

К ограничения иерархической модели данных можно отнести:

1. Отсутствует явное разделение логических и физических характеристик модели;

2. Для представления неиерархических отношений данных требуются дополнительные манипуляции;

3. Непредвиденные запросы могут требовать реорганизации базы данных.

3. Сетевая модель

Сети - естественный способ представления отношений между объектами. Они широко применяются в математике, исследованиях операций, химии, физике, социологии и других областях знаний. Сети обычно могут быть представлены математической структурой, которая называется направленным графом. Направленный граф имеет простую структуру. Он состоит из точек или узлов,соединенных стрелками или ребрами. В контексте моделей данных узлы можно представлять как типы записей данных, а ребра представляют отношения один-к -одному или один-ко-многим. Структура графа делает возможными простые представления иерархических отношений (таких, как генеалогические данные) .

Сетевая модель данных - это представление данных сетевыми структурами типов записей и связанных отношениями мощности один-к-одному или один-ко-многим. В конце 60-х конференция по языкам систем данных (Conference on Data Systems Languages, CODASYL) поручила подгруппе, названной Database Task Group (DTBG), разработать стандарты систем управления базами данных. На DTBG оказывала сильное влияние архитектура, использованная в одной из самых первых СУБД, Iategrated Data Store (IDS), созданной ранее компанией General Electric.Это привело к тому, что была рекомендована сетевая модель.

Документы Database Task Group (DTBG) (группа для разработки стандартов систем управления базами данных) от 1971 года остается основной формулировкой сетевой модели, на него ссылаются как на модель CODASYL DTBG. Она послужила основой для разработки сетевых систем управления базами данных нескольких производителей. IDS (Honeywell) и IDMS (Computer Associates) - две наиболее известных коммерческих реализации. В сетевой модели существует две основные структуры данных: типы записей и наборы:

· Тип записей. Совокупность логически связанных элементов данных.

· Набор. В модели DTBG отношение один-ко-многим между двумя типами записей.

· Простая сеть. Структура данных, в которой все бинарные отношения имеют мощность один-ко-многим.

· Сложная сеть. Структура данных, в которой одно или несколько бинарных отношений имеют мощность многие-ко-многим.

· Тип записи связи. Формальная запись, созданная для того, чтобы преобразовать сложную сеть в эквивалентную ей простую сеть.

В модели DBTG возможны только простые сети, в которых все отношения имеют мощность один-к-одному или один-ко-многим. Сложные сети, включающие одно или несколько отношений многие-ко-многим, не могут быть напрямую реализованы в модели DBTG. Следствием возможности создания искусственных формальных записей является необходимость дополнительного объема памяти и обработки, однако при этом модель данных имеет простую сетевую форму и удовлетворяет требованиям DBTG.

4. Реляционная модель

В 1970-1971 годах Е.Ф. Кодд опубликовал две статьи, в которых ввел реляционную модель данных и реляционные языки обработки данных - реляционную алгебру и реляционное исчисление.

· Реляционная алгебра - Процедурный язык обработки реляционных таблиц.

· Реляционное исчисление - Непроцедурный язык создания запросов.

Все существующие к тому времени подходы к связыванию записей из разных файлов использовали физические указатели или адреса на диске. В своей работе Кодд продемонстрировал, что такие базы данных существенно ограничивают число типов манипуляций данными. Более того, они очень чувствительны к изменениям в физическом окружении. Когда в компьютерной системе устанавливался новый накопитель или изменялись адреса хранения данных, требовалось дополнительное преобразование файлов. Если к формату записи в файле добавлялись новые поля, то физические адреса всех записей файла изменялись. То есть такие базы данных не позволяли манипулировать данными так, как это позволяла бы логическая структура. Все эти проблемы преодолела реляционная модель, основанная на логических отношениях данных.

Существует два подхода к проектированию реляционной базы данных.

· Первый подход заключается в том, что на этапе концептуального проектирования создается не концептуальная модель данных, а непосредственно реляционная схема базы данных, состоящая из определений реляционных таблиц, подвергающихся нормализации.

· Второй подход основан на механическом преобразовании функциональной модели, созданной ранее, в нормализованную реляционную модель. Этот подход чаще всего используется при проектировании больших, сложных схем баз данных, необходимых для корпоративных информационных систем.

Табл.1. Основные определения реляционных СУБД

Термин Определение
Реляционная модель данных Организует и представляет данные в виде таблиц или реляций.
Реляционная база данных (РБД, RDBMS). База данных, построенная на реляционной модели.
Реляция (таблица-элементарная информационная единица) Двумерная таблица, содержащая строки и столбцы данных.
Степень реляции. Количество атрибутов реляции. При том необходимо помнить, что никакие два атрибута реляции не могут иметь одинаковых имен.
Кортежи Строки реляции (таблицы), соответствуют объекта, конкретному событию или явлению.
Атрибуты Столбцы таблицы, характеризующие признаки, параметры объекта, события, явления.
Область атрибута Набор всех возможных значений, которые могут принимать атрибуты. Если в процессе работы возникает ситуация, что атрибут неприменим или значения одного или нескольких атрибутовстроки пока неизвестны, то строка запишется в базуданных с пустыми значениямиэтих атрибутов (NULL строка).
Пустое значение Значение, приписываемое атрибуту в кортеже, если атрибут неприменим или его значение неизвестно
Ключ Любой набор атрибутов, однозначно определяющий каждый кортеж реляционной таблицы.
Ключ реляции Ключ также можно описать как минимальное множество атрибутов, однозначно определяющих (или функционально определяющих)каждое значение атрибута в кортеже.
Составной ключ Ключ содержащий два или более атрибута.
Потенциальный ключ В любой данной реляционной таблице может оказаться более одного набора атрибутов. Обычно в качестве первичного ключа выбирают потенциальный ключ, которым проще всего пользоваться при повседневной работе по вводу данных.
Первичный ключ. Поле или набор полей, однозначно идентифицирующий запись.
Внешний ключ. Набор атрибутов одной таблицы, являющийся ключом другой (или той же самой) таблицы; используется для определения логических связей между таблицами. Атрибуты внешнего ключа не обязательно должны иметь те же имена, что и атрибуты ключа, которым они соответствуют.
Рекурсивный внешний ключ. Внешний ключ, ссылающийся на свою собственную реляционную таблицу.
Родительская реляция (таблица) Таблица, поля которой входят в другую таблицу.
Дочерняя реляция (таблица) Таблица, поля которой используют информацию из полей другой таблицы, являющейся по отношению к данной родительской.
Отношение один-к-одному Когда одной записи в родительской таблицы соответствует одна запись в дочерней таблице
Отношение один-ко-многим Когда одной записи в родительской таблицы соответствует несколько записей в дочерней таблице
Отношение многие-ко-многим Когда многим записям в родительской таблицы соответствуют несколько записей в дочерней таблице
Рекурсивное отношение. Отношение, связывающее объектное множество с ним самим.
View (Представления) Информационная единица РБД (по структуре аналогичная таблице), записи которой сформированы в результате выполнения запросов к другим таблицам.
Ссылочная целлостность Адекватное воспроизведение записей в ссылочных полях таблиц.
Триггер Средство обеспечения ссылочной целостности на основе механизма каскадных изменений.
Индекс Механизмы быстрого доступа к хранящимся в таблицах данных путем их предварительной сортировки.
Транзакция Такое воздействие на СУБД, которое переводит ее из одного целостного состояния в другое.

Ограничительные условия, поддерживающие целостность базы данных.

Как следует из определения ссылочной целостности при наличии в ссылочных полях двух таблиц различного представления данных происходит нарушение ссылочной целостности, такое нарушение делает информацию в базе данных недостоверной. Чтобы предотвратить потерю ссылочной целостности, используется механизм каскадных изменений (который чаще всего реализуется специальными объектами СУБД - триггерами). Данный механизм состоит в следующей последовательности действий:

· при изменении поля связи в записи родительской таблицы следует синхронно изменить значения полей связи в соответствующих записях дочерней таблицы;

· при удалении записи в родительской таблицы следует удалить соответствующие записи и в дочерней таблице.

Процесс нормализации

Нормализация - процесс приведения реляционных таблиц к стандартному виду. В базе данных могут присутствовать такие проблемы как:

· Избыточность данных. Повторение данных в базе данных.

· Аномалия обновления. Противоречивость данных, вызванная их избыточностью и частичным обновлением.

· Аномалия удаления. Непреднамеренная потеря данных, вызванная удалением других данных.

К-во Просмотров: 320
Бесплатно скачать Реферат: Базы данных и их сравнительные характеристики