Реферат: Биологическое окисление
Fe2+ -e → Fe3+
Отсюда следует, что окисление всегда сопровождается восстановлением акцептора электронов. Этот принцип окислительно-восстановительных процессов в равной мере применим к биохимическим системам и характеризует природу процессов биологического окисления.
Хотя некоторые бактерии (анаэробы) живут в отсутствие кислорода, жизнь высших животных полностью зависит от снабжения кислородом. Кислород, главным образом, используется в процессе дыхания – последнее можно определить как процесс улавливания клеточной энергии в виде АТФ при протекании контролируемого присоединения кислорода с водородом с образованием воды. Кроме того, молекулярный кислород включается в различные субстраты при участии ферментов, называемых оксигеназами. Многие лекарства, посторонние для организма вещества, канцерогены (ксенобиотики) атакуются ферментами этого класса, которые в совокупности получили название цитохрома Р450 .
Гипоксические нарушения метаболизма клетки занимают ведущее место в патогенезе критических состояний. Главную роль в формировании необратимости патологических процессов приписывают крайним проявлениям расстройства клеточного метаболизма. Адекватное обеспечение клетки кислородом является основным условием сохранения ее жизнеспособности.[12,1992]
Введением кислорода можно спасти жизнь больных, у которых нарушено дыхание или кровообращение. В ряде случаев успешно применяется терапия кислородом под высоким давлением; следует однако отметить, что интенсивная или продолжительная терапия кислородом под высоким давлением может вызвать кислородное отравление.[2,1994]
При написании данной работы перед нами стояла цель: изучить биологическое окисление и его значение в жизнедеятельности клетки и организма в целом. Для этого мы рассмотрели:
- использование кислорода клеткой;
- источники энергии клетки – цикл лимонной кислоты (цикл Кребса), окислительное фосфорилирование;
- микросомальное окисление;
- антиоксидантную защиту
Общие представления о биологическом окислении.
Окислительно-восстановительные системы и потенциалы.
Источник энергии, используемый для выполнения всех видов работ (химической, механической, электрической и осмотической) – это энергия химической связи. Высвобождение энергии углеводов, жиров, белков и других органических соединений происходит при их окислительно-восстановительном распаде. Высвобожденная энергия затрачивается на синтез АТФ.
Изменение свободной энергии, характеризующее реакции окисления и восстановления, пропорционально способности реактантов отдавать или принимать электроны. Следовательно, изменение свободной энергии окислительно-восстановительного процесса можно характеризовать не только величиной DG0 ' , но и величиной окислительно-восстановительного потенциала системы (Ео). Обычно окислительно-восстановительный потенциал системы сравнивают с потенциалом водородного электрода, принимая последний за ноль, 0В при рН=0. Однако для биологических систем удобнее использовать окислительно-восстановительный потенциал при рН=7,0 (Ео'); при таком рН потенциал водородного электрода равен -0,42В.[10,1993]
Пользуясь таблицей 1, можно предсказать, в каком направлении пойдет поток электронов при сопряжении одной окислительно-восстановительной системы.
Таблица 1. Стандартные потенциалы некоторых окислительно-восстановительных систем.[10,1993]
Система |
Ео¢/ Вольт |
Кислород/вода |
+0,82 |
Цитохром a: Fe3+ /Fe2+ |
+0,29 |
Цитохром с: Fe3+ /Fe2+ |
+0,22 |
Убихинон: окисл./восстан. |
+0,10 |
Цитохром b:Fe3+ /Fe2+ |
+0,03 |
Фумарат/сукцинат |
+0,03 |
Флавопротеин: окисл./восстан. |
К-во Просмотров: 643
Бесплатно скачать Реферат: Биологическое окисление
|