Реферат: Бор 2

Разделять природный бор на изотопы и получать соединения бора с измененным изотопным составом умеют уже во многих странах. Разделяют, конечно, не элементарный бор, а одно из его соединений, чаще всего газообразный при нормальных условиях трехфтористый бор. В жидкость ВF3 превращается при температуре около минус 100°C. Установлено, что молекулы трехфтористого бора, в состав которых входит бор-11, немного подвижнее тех, в которых заключен бор-10. Из-за этого 11 ВF3 испаряется из жидкого трехфтористого бора чуть-чуть легче и быстрее, чем 10 BF3 . Этой минимальной разницей в свойствах и пользуются для разделения изотопов бора в ректификационных колоннах. Процесс этот сложный и долгий – все-таки разница в свойствах моноизотопных фторидов бора очень невелика.

Конечно, регулирующие стержни делают не из фторида бора – даже если его изотопный состав изменен. Но превратить BF3 в элементарный бор или карбид бора В4 С намного проще, нежели разделить изотопы. Это делается чисто химическими способами. Способностью бора активно захватывать нейтроны пользуются и для защиты от нейтронного излучения. Широкое распространение получили борные счетчики нейтронов.

Конкуренты алмаза

В предыдущей главе уже упоминался карбид бора В4 С – как один из материалов для изготовления регулирующих стержней. Но это вещество, впервые полученное еще Анри Муассаном, нужно не только атомникам. Уже много лет его применяют для обработки твердых сплавов, потому что по твердости карбид бора превосходит почти все прочие кристаллы, уступая лишь алмазу.

Этим черным блестящим кристаллам не страшен разогрев. С повышением температуры их свойства почти не меняются, а плавится карбид бора лишь при 2350°C. Более того, при температуре ниже 1000°C это вещество обладает исключительной химической стойкостью: в этих условиях на него не действуют ни кислород, ни хлор. Это значит, что инструмент из карбида бора может работать при высоких температурах в окислительных средах.

Причины сочетания великолепных физико-механических и химических свойств этого вещества объясняются строением атома бора и кристаллической структурой карбида бора. Чтобы пояснить их, вернемся к электронному строению элемента №5.

Напомним, что в атоме бора вокруг ядра вращаются пять электронов, из них три на наружной оболочке. Эти три электрона неравноценны: два составляют пару, а третий – не спаренный и потому особенно «буйный».

По законам квантовой механики не спаренный электрон всегда стремится найти себе пару – электрон с противоположно направленным спином (спином (от английского spin – вращение) называется собственный момент количества движения элементарной частицы), а найти ее он может только в другом атоме. В результате образуются ковалентные связи, при которых электроны двух или нескольких атомов образуют общее электронное облако.

Ковалентная связь – самая прочная из всех видов химической связи. В полимерных молекулах так связаны все атомы «скелета», и поэтому так трудно разрушить связи в полимере. А поскольку в кристалле бора атомы оказываются связаны именно такой связью, то любой кристаллик элемента №5 можно рассматривать как молекулу полимера, неорганического полимера.

Карбид бора – тоже полимер. Правильнее его формулу писать не В4 С, а (B12 C3 )n . Элементарная ячейка таких кристаллов – ромбоэдрическая, ее каркас образуют 12 прочных, компактных (и ковалентно связанных) атомов бора. Внутри этого каркаса располагается линейная группа из трех связанных между собой атомов углерода. Ковалентные связи возникают также между «хозяевами» и «гостями». В результате получается настолько прочная конструкция, что ее очень трудно разрушить любыми воздействиями. Поэтому карбид бора и тверд, и прочен, и химически неуязвим, и термически стоек.

Подобным образом построены и кристаллы многих боридов, причем ковалентной связью иногда соединяются атомы бора с металлами. Самый термостойкий из всех боридов – диборид гафния HfB2 , который плавится только при 3250°C. «Рекордист» по химической стойкости – диборид тантала TaB2 . На него не действуют никакие кислоты, даже кипящая царская водка.

И напоследок – о соединениях бора с азотом. Характерно, что сочетание элементов №5 и 7, по существу, дублирует элемент №6. Известно вещество боразол – B3 N3 H6 , которое не случайно иногда называют неорганическим бензолом. У бензола и боразола почти идентичное строение, близкие физические и химические свойства (правда, в большинстве реакций боразол ведет себя активнее бензола), причем не только у самих веществ, но и у аналогичных их производных.

BN – таков состав вещества, которое иногда называют белым графитом. Его получают, прокаливая технический бор или окись бора в атмосфере аммиака. Это белый, похожий на тальк порошок, но сходство с тальком чисто внешнее, намного больше и глубже сходство аморфного нитрида бора с графитом. Одинаково построены кристаллические решетки, оба вещества с успехом применяют в качестве твердой высокотемпературной смазки.

После того как в условиях сверхвысоких давлений и высоких температур удалось перестроить кристаллическую решетку графита и получить искусственные алмазы, подобную операцию провели и с белым графитом.

Условия опыта, в котором это удалось сделать, были такими: температура 1350°C, давление 62 тыс. атм. Из автоклава вынули неопределенного цвета кристаллы, внешне совершенно непривлекательные. Но эти кристаллы царапали алмаз. Правда, и он не оставался в долгу и оставлял царапины на кристаллах нитрида бора.

Это вещество назвали боразоном. Хотя твердость алмаза и боразона одинакова, последний имеет два очень значимых для техники преимущества. Во-первых, боразон более термостоек: он разлагается при температуре выше 2000°C, алмаз же загорается при 700...800°C. Во-вторых, боразон лучше, чем алмаз, противостоит действию ударных нагрузок – он не столь хрупок.

Известное сходство с углеродом проявляет и сам бор, а не только его соединения с азотом. Это не должно удивлять. Бор и углерод – соседи по менделеевской таблице, оба элемента – неметаллы, мало отличаются размеры их атомов и ионов. Главное следствие этого сходства – быстрое развитие химии бороводородов, которая, по мнению многих ученых, может со временем стать «новой органикой». Напомним, что просто «органика», органическая химия, это, по существу, химия углеводородов и их производных.

Новая органика

Первые соединения бора с водородом были получены П. Джонсом и Л. Тейлором еще в 1881 г. Долгое время охотников заниматься этими соединениями было немного. Бороводороды (или бораны) нестойки, ядовиты, они скверно пахнут и главное очень странно построены. Попробуйте определить, какую валентность проявляет бор в таких, например, соединениях: B2 H6 , В4 Н10 , B5 H9 , В10 Н14 .

Строение некоторых бороводородов можно было бы объяснить образованием полимерных цепочек из атомов бора. Но тогда эти соединения должны были бы обладать большой стабильностью, а они, наоборот, разлагаются от малейшего воздействия. Значит, нужно другое объяснение их структуры.

Картина начала проясняться лишь в конце 40-х – начале 50-х годов нашего века. Одной из причин, но которой во многих странах стали усиленно заниматься химией бороводородов и их производных, был интерес к этим веществам, проявленный военными ведомствами.

Дальность и скорость полета летательных аппаратов (неважно, самолет это или ракета) во многом зависят от теплоты сгорания применяемого горючего. Энергетический «потолок» любого углеводородного топлива не превышает 10,5 тыс. ккал/кг, потому что теплотворная способность самого углерода сравнительно невелика – 7800 ккал/кг.

Замена углерода более «калорийными» элементами позволяет получать топливо со значительно лучшими энергетическими характеристиками. Теплота сгорания бора (14 170 ккал/кг) почти вдвое больше, чем углерода. Когда стали подсчитывать, что может дать замена углеводородных топлив бороводородными, то оказалось, что реактивная авиация может выиграть от такой замены очень многое. Во-первых, при заданной дальности полета можно уменьшить габариты самолета, соответственно увеличив его скорость; во-вторых, можно повысить полезную нагрузку и, в-третьих, сократить разбег при взлете.

Разумеется, новейшие сведения о бороводородных топливах засекречены, поэтому придется довольствоваться примерами десятилетней давности. Уже в середине 60-х годов были известны американские бороводородные топлива типа HEF. Это производные бороводородов, в которых некоторые атомы водорода заменены органическими радикалами (этил, бутил и т.д.). У этих веществ теплота сгорания меньше, чем у чистых боранов, но зато они менее ядовиты и более стабильны.

Испытания первых бороводородных топлив были не совсем удачными. Топлива, которые при сгорании дают твердые остатки, опасны для любой техники, особенно для реактивной: возможна забивка сопел, чреватая опасностью взрыва. Если же твердые вещества образуются из-за недостаточной стабильности не успевшего сгореть жидкого топлива, то возможны нарушения работы системы подачи топлива и других узлов двигателя. После стендовых испытаний турбореактивного двигателя, работавшего на бороводородном топливе, были обнаружены отложения окиси бора на статоре и роторе турбины, на всех деталях форсажной камеры, на выходном сопле. Взрыва не было, но он мог быть.

Успешнее оказались испытания бороводородных топлив в воздушно-реактивных двигателях, предназначенных для управляемых снарядов. С переводом на новое топливо летно-технические данные этих снарядов существенно улучшились.

Можно предполагать, что за 10 лет, прошедших со времени описанных испытаний, многие трудности того времени удалось преодолеть. Химия бороводородов и их производных развивается быстро. В частности, в эти годы синтезированы барен и необарен – вещества состава В10 Н10 (СН2 )2 . Друг от друга они отличаются только взаиморасположением составляющих их атомов. По сравнению с боранами барены обладают значительно большей термической и химической стойкостью. Барен выдерживает нагревание до 500°C, не растворяется в щелочах и спиртах, не окисляется под действием большинства окислителей.

Конечно, интерес к бороводородам и их производным объясняется не только возможностью использования их в качестве топлива. Член-корреспондент Академии наук СССР Б.В. Некрасов утверждает, что «химия бороводородов и их производных по своему характеру и богатству синтетических возможностей приближается к органической химии». Подобного мнения придерживаются и многие другие специалисты.

«Новая органика» только начинается. Органика на основе бора. И это еще одно подтверждение большого будущего элемента №5.

Поразительный индивидуализм

Бор не относится к числу самых распространенных элементов земной коры, на его долю приходится лишь 3·10–4 % ее веса. Несмотря на это, известно больше 80 собственных минералов бора; в «чужих» минералах он почти не встречается. «Некоммуникабельность» бора объясняют, прежде всего тем, что у комплексных анионов элемента №5 (а именно в таком виде он входит в большинство минералов) нет достаточно распространенных аналогов. Интересно, что почти во всех минералах бор связан с кислородом, а группа фторсодержащих соединений совсем малочисленна. Главные минералы бора: бура Na2 B4 O7 ·10H2 O, кернит Na2 B4 О7 ·4H2 О и сассолин (или борная кислота), а также боросиликат датолит. Самые крупные месторождения борного сырья находятся в СССР (Сибирь, Казахстан), США (штат Калифорния), Перу, Аргентине, Турции.

Борные удобрения

Для многих живых организмов бор – жизненно важный элемент. Вместе с марганцем, медью, молибденом и цинком он входит в число пяти важнейших микроэлементов. При недостатке бора в почве заметно уменьшаются урожаи многих культур, причем особенно сильно нехватка бора сказывается на урожае семян. Установлено, что бор влияет на углеводный и белковый обмен в растениях. Вместе с урожаем культурных растений с каждого гектара почвы ежегодно уходит до 10 г бора. Особенно активно уносят его корнеплоды и кормовые травы. Эту естественную убыль приходится восполнять, внося в почву борные удобрения. В качестве таковых чаще всего применяют осажденные бораты магния, борно-датолитовое удобрение, содержащее до 14,5% водорастворимой борной кислоты, и суперфосфат с добавками соединений бора. Их вносят под многолетние травы, лен, хлопчатник, овощные, плодово-ягодные и многие другие культуры. Эффект от применения борных удобрений во много раз превосходит затраты на их производство и внесение в почву.

Причины превосходства

К-во Просмотров: 329
Бесплатно скачать Реферат: Бор 2