Реферат: Человек как творческий экологический фактор. Основные направления и результаты антропогенных изменений в окружающей среде. Компенсационные механизмы и возможности среды в этих условиях

В тех странах, где использование бензина с добавками тетраэтилсвинца сведено к минимуму, содержание Pb в воздухе снижено многократно. В России же сейчас только 25% бензина производится без этих добавок. Из приземного воздуха происходит оседание свинца на почву. В случае кислотных дождей проникновение Pb в почву происходит намного интенсивнее. Через корневую систему ионы трансформируются, а наземную часть растений. Среднее содержание Pb в большинстве растений составляет 2-3 мг/кг. Меньше всего свинца в бобовых, больше всего в кабачках.

Что касается другого токсиканта из неорганической «мрачной тройки» - кадмия ( Cd ) , то на его опасность, можно сказать, указывает сам химический символ: «Cd» курильщикам следует читать как аббревиатуру английского C ancer d iseast – раковое заболевание. Рак легких – вероятный результат длительного воздействия аэрозоля оксида Cd, поступающего в альвеолы с табачным дымом. Более четверти летальных исходов онкологических больных происходит от рака легких. Среди заболевших 80 - 90% - курильщики. Табак – растение, в наибольшей мере аккумулирующее соли Cd из почвы, до 2 мг/кг. Это во много раз превышает предельно допустимое содержание Cd в основных продуктах питания.

С пищей, водой и воздухом ежедневно в организм поступает до 0,2 мг Cd, большая часть с пищей, меньшая с водой и воздухом. Однако усвоение – всасывание в кровь водно-пищевого Cd находится на уровне 5%, а воздушного – до 80%. По этой причине содержание Cd в организме жителей крупных городов с их загрязненной атмосферой может быть в десятки-сотни раз больше, чем у жителей сельской местности. В воздух кадмий поступает из общих со свинцом источников – сжигание ископаемых топлив ТЭЦ, с газовыми выбросами предприятий, производящих или использующих Cd. Оседание Cd-аэрозолей на почвы дополняется внесением Cd в почву сельскохозяйственных угодий с минеральными удобрениями: суперфосфатом (7,2 мг/кг), фосфатом калия (4,7 мг/кг), селитрой (0, 7 мг/кг). Заметно содержание Cd в навозе. Попадая с неочищенными стоками промышленных предприятий в природные водоемы, растворенный Cd осаждается и накапливается в донных отложениях. Водоросли, моллюски и ракообразные концентрируют Cd в своих организмах. Подобно свинцу и ртути, кадмий не является жизненно необходимым металлом.

Содержание Cd в земной коре очень мало, поэтому не существует залежей руд кадмия, он входит малой долей (~0,1%) в полиметаллические руды свинца, серебра, цинка. Это не помешало техническому применению Cd в некоторых отраслях техники ХХ века: для создания никель-кадмиевых аккумуляторов и бытовых батареек, аварийных и регулирующих стержней для атомных

реакторов. Как составная часть Cd входит в сплавы, катализаторы, лазерные материалы, красители, стабилизаторы. Используют Cd и как антикоррозионное и декоративное покрытие изделий из железа и сталей.

Ртуть (Hg) в основном применяется в электротехнической и электрохимической промышленности, в качестве жидкого электрода в ртутных выпрямителях тока, обновляющегося катода при электролизном получении щелочи и хлора. Иные применения Hg (лабораторные приборы, лекарственные препараты, фунгициды) год за годом становятся все менее масштабными из-за опасности Hg-токсикации.

О токсичности соединений Hg, в частности сулемы, было известно уже давно. Сама же жидкая Hg не обладает выраженными токсическими свойствами. В прошлом ее использовали для лечения кишок. Пары Hg губительно действуют на организм, поражая нервную систему. В непроветриваемом помещении, где находится жидкая ртуть, воздух содержит ~10 мг/м . Хроническое отравление Hg происходит уже при содержании Hg в сотых долях мг/м . Развивающееся при этом заболевание – микромеркуриализм проявляется в быстрой утомляемости, повышенной возбудимости с последующим ослаблением памяти, неуверенностью в себе, раздражительности, головных болях, дрожании конечностей. Признаки микромеркуриализма часты среди научных сотрудников, проработавших 8 – 10 лет в лабораторном помещении с содержанием Hg в воздухе на уровне 10–2 мг/м . Эта цифра – ПДК для рабочей зоны, т.е. для лиц, имеющих профессиональный контакт с Hg. Попадая в воду, Hg, казалось бы, должна оставаться неизменной. По этой причине сбрасывание жидкой Hg в воду не рассматривалось прежде как экологическое преступление. Затем выяснилось, что существуют водные микроорганизмы, способствующие переводу Hg в диметилртуть. Продвижение по пищевой цепи приводило к накоплению Hg в организмах хищных рыб – тунца, лососевых до уровня, сделавшего их непригодными для потребления. Изгнание Hg из жизненного обихода и промышленности продолжается и по сей день. Однако освободить атмосферу, воды и почвы от загрязнений Hg не удастся. Примерно половина выбросов Hg в окружающую среду природного происхождения обусловлена дегазацией земной коры, содержащей ~0,5 мг Hg/кг. По этой причине Hg – микроэлемент, постоянно присутствующий в организме (~10 мг), в основном, как и Cd, в почках и печени. При поступлении в легкие в еще большей мере, чем Cd, практически полностью. Выведение ее из организма осуществляется всеми железами желудочно-кишечного тракта, почками, потовыми, молочными и слюнными железами, легкими. В организм человека Hg поступает в наибольшей мере с рыбопродуктами, в которых ее содержание может превышать ПДК= 0,5 мг/кг.

В заключение можно привести тревожные статистические данные: процент новорожденных с теми или иными дефектами в зонах с высоким содержанием тяжелых металлов в почве, снеге, воде приблизительно в три раза выше, чем в малозагрязненных.

Алюминий – наиболее распространенный металл: 8,8% массы земной коры составляет Al, входящий в состав различных минералов. Соответственно высоко содержание его в различных объектах окружающей среды. В живых организмах Al не выполняет какой-либо физиологической функции, но из-за его распространенности входит в состав живого вещества. Общее количество такого включенного в клеточные организмы Al составляет около 5 млрд. т. Больше всего Al в бактериях и наземных растениях. Острая токсичность Al невелика

(ЛД50 = 370 мг/кг). Первые данные о токсичности алюминия были получены лишь в 70-е годах ХХ века. Поступающие в организм с водой и пищей ионы Al в форме нерастворимого фосфата выводятся с фекалиями, а частично всасываются в желудочно-кишечном тракте в кровь и выводятся почками. Если же деятельность почек нарушена, происходит накапливание Al, сопровождающееся ростом хрупкости костей, нарушением метаболизма Ca, Mg, P, F и развитием различных форм анемии. Обнаружены и более грозные проявления токсичности Al: нарушение речи, провалы памяти, нарушение ориентации, помутнение рассудка, конвульсии, а порой и гибель пациентов с почечной недостаточностью. Приведенные отклонения схожи с симптомами болезни Альцгеймера. Эта новая напасть проявляется в развитых странах и поражает пожилых людей.

Так, сегодня число пораженных болезнью Альцгеймера в США превысило

3 млн. человек. Столь же неблагополучно положение и в Великобритании, Швеции. Статистических данных по России нет, т.к. бытующий термин «старческий маразм» маскирует болезнь Альцгеймера, а средняя продолжительность жизни мужчин в России меньше 60 лет. Проявление же болезни характерно в более пожилом возрасте.

Токсичность алюминия явилась «выстрелом в спину» для человечества. Будучи третьим по распространенности элементом земной коры и обладая ценными качествами, металлический алюминий нашел широчайшее применение и в технике (уже в 60-е гг. его использовали при производстве около 4 тыс. изд.) и в быту. Однако алюминиевая посуда (если она не контактирует с кислой или щелочной средой) не является главным поставщиком Al в организм. Обогащение питьевой воды ионами Al начинается на водоочистной станции при обработке ее сульфатом алюминия. Многократное превышение концентрации Al над нормой характерно для озерных и речных вод в регионах, подверженных действию кислотных дождей, за счет растворения природных малорастворимых алюмосиликатных пород. Это приводит к гибели рыб, земноводных и моллюсков в водоемах, орошаемых кислотными дождями. Не следует злоупотреблять содержащими гидроксид алюминия лекарствами: противоартритными, противогеморроидальными, понижающими кислотность желудочного сока. Как буферную добавку вводят гидроксид алюминия и в некоторые препараты аспирина и в губную помаду. Среди же пищевых материалов наивысшей концентрацией алюминия (до 20 мг/г) выделяется, увы, чай.

2.2. Органические токсины.

Органические вещества, являющиеся токсичными для микроорганизмов, животных, человека, вырабатываются бактериями, мироводораслями, растениями, насекомыми, рыбами, пресмыкающимися. Различные биологические виды используют эти токсины и для борьбы за экологическую нишу (сине-зеленые водоросли) и как средство защиты или нападения. Среди природных токсинов есть и столь простые вещества, как синильная кислота, аллилтиоциа-

нид, пентаметилендиамин, и соединения группы алкалоидов, и наиболее токсичные вещества белковой природы – ботулинический и дифтерийный токсины. Однако число природных токсинов составляет ничтожную долю токсичных веществ , созданных в лабораториях органического синтеза и нашедших применение не только в криминальных целях, но и в медицине, технике мирной и военной (как боевые отравляющие вещества). От безумия химической войны человечество отказалось, а безумие экотоксикации – выбросов в окружающую среду органических веществ, губительно действующих на здоровье миллиардов людей, пролжается. Наиболее опасными среди множества токсичных веществ, образующихся при сжигании ископаемых топлив (нефтепродуктов, угля, дерева и т. д.), в производствах химической, нефтехимической, металлургической, целлюлозно-бумажной промышленности, являются полиароматические углеводороды (ПАУ) , и в особенности диоксины. Самой канцерогенной (мутагенной) токсичностью обладают такие вещества этой группы, как: холантрен, перилен, бензапирен, дибензпирен. Токсичные свойства бензапирена изучены на мышах: обнаружено подавление популяции за счет гибели при рождении и уменьшения веса новорожденных животных. Показано, что возникновение раковых заболеваний происходит и при ингаляции, и при введении бензапирена с пищей, а также при контакте с кожей. Однако эти результаты получены при дозах бензапирена в сотни и тысячи раз больших, чем получаемые людьми из окружающей среды. В атмосфере ПАУ довольно устойчивы. Их постепенная трансформация в иные продукты происходит при взаимодействии с озоном (с образованием полиядерных хинонов) и диоксидов азота (продукты -– итробензапирены, отличающиеся высокой мутагенной активностью). Бензапирен, попавший в организм, частично выводится в неизменном виде, а частично окисляется, давая производственные фенольного и хинонного типа. Некоторые из этих продуктов также присуща мутагенная активность.

Сложность защиты окружающей среды от ПАУ связаны с малостью концентраций этих веществ. Однако эта опасная малость несравнима с малостью концентрации суперэкотоксинов - веществ группы диоксинов.

«Грязной дюжиной» называют группу из 12 токсичных хлорорганических веществ . Некоторые из низ используются как биологически активные вещества в сельском хозяйстве, технике, другие попадают в окружающую среду как примесь к другим веществам. Все эти вещества долгожители, они химически устойчивы в условиях окружающей среды. В «грязную дюжину» входят пестициды, известные под торговыми наименованиями линдан, лантрен, ДДТ, а также три группы веществ с обобщенным названием «диоксины» (Д ) . Именно эта группа Д опасна для всех потребляющих кислород организмов планеты. Объединение химически различных веществ в одну группу Д обусловлено качественным сходством их токсических свойств – политоксичностью. Длительное воздействие Д в ничтожных концентрациях приводит к росту онкологических заболеваний, гибели плода в матке, рождению детей с физическими и психическими уродствами, к снижению и потере иммунитета. Последнее дало основание для броского названия токсикации Д – химический СПИД. Недавние исследования в США выявили еще один вид токсикации Д – потерю фертильности мужской спермы. Сегодня около 20% американских семей не могут иметь детей, а в начале ХХI века по прогнозу это число может возрасти до 50%. Самая легкая форма токсикации Д – потеря способности к длительным физическим и умственным усилиям. В особом положении находятся дети. Их токсикация диоксинами начинается с первого глотка материнского молока. В молоке кормилиц содержание Д существенно больше, чем в коровьем (у коров лактация – непрерывный процесс). Содержание Д в молоке женщин США и России примерно одинаково и в несколько раз меньше, чем у женщин Южного Вьетнама. Этот факт – память о 130-170 кг диоксинов, содержавшихся как малая примесь в 52 тыс. т «оранжевого реагента» – дефолианта, распыленного самолетами американских ВВС на леса в ходе вьетнамской войны 1962 – 1970 гг. Именно последствия этой войны привели к пониманию грозной опасности диоксинов для человечества.

По данным за 1996 г., суммарный выброс Д, выраженный в ЭТ (эквивалент токсичности), в США составляет около 10 кг/год. Половина этого количества приходится на мусоросжигательные заводы и сжигатели медицинских отходов. Вклады в суммарный выброс Д из этих источников практически одинаковы, хотя массы сжигаемых материалов различны. Твердых бытовых отходов (картон, бумага, пищевые отходы, пластиковые изделия, резина) на мусоросжигательных заводах сжигается около 20 млн. т в год, а медицинских отходов – в 6 – раз меньше. Но в медицинских отходах намного больше пластиковых изделий, преимущественно из поливинилхлорида. Почти 57% (масс) этого материала приходится на хлор. Повышенная температура, наличие органических веществ, особенно ароматических веществ и хлора – условия, в которых происходит образование диоксинов. При принятой на мусоросжигательных заводах температуре 850 С диоксины сгорают, но частично образуются вновь при понижении температуры отходящих газов.

В США, как и в странах Западной Европы, опасность диоксиновой токсикации осознана. Принято решение о ликвидации более тысячи из 6700 функционирующих сжигателей медицинских отходов. Ведется компания за сортировку бытовых отходов с отделением пластмассовых изделий на стадии сбора мусора. В Швеции – мировом лидере в деле охраны окружающей среды – бытовая сортировка мусора практикуется уже многие годы. Поразительны результаты борьбы с выбросами Д в Нидерландах, где мусоросжигательные заводы также были основным источником выбросов Д. В 1990 г. эти выбросы составляли (в ЭТ) 412 г/год. Стоившая миллиарды долларов реконструкция заводов – оснащение их очистительными сооружениями (адсорбция Д на пирофорных углях) – привела к снижению выбросов в 1996 г. до 4,1 г/год. Еще один способ снижения образования Д при уничтожении мусора – его газификация и сжигание образующихся горючих газов с утилизацией твердых и жидких отходов. В России основным источником образования Д являются, по-видимому, предприятия химической промышленности и целлюлозно-бумажные комбинаты, на которых применяют хлорную отбелку целлюлозы. Сточные воды этих комбинатов содержат полихлордибензофураны. Заметную добавку к выбросам Д в атмосферу привносят работающие на угле ТЭС, а также лесные пожары. Общее

Количество выбросов Д в России не установлено, но, вероятно, измеряется десятками килограммов в год. Осуществление программы строительства мусоросжигательных заводов в Москве и других крупных городов приведет к быстрому росту загрязнения диоксинами этих городов и окрестностей. С последующим ростом числа таких заводов произойдет заметное увеличение выбросов Д в окружающую среду в России. О сложной диаксиновой ситуации и ее ужасных последствиях для России было сказано в докладе Государственной комиссии в 1990г. За прошедшее с 1990 г. время ситуация вряд ли улучшилась. В конце 1995 г. было принято постановление правительства № 1102 «Защита окружающей среды и населения от диоксинов и диоксиноподобных токсикантов на 1996/97 годы». О результатах реализации этой программы говорилось преждевременно.

В заключение разговора о диоксинах хотелось бы немного сказать об их выведении из организма. Выведение неизменного Д из организма происходит в основном в результате почечной фильтрации. Медленность такого самоочищения связана с тем, что подавляющая часть Д сконцентрирована в жировых тканях организма. Это более лабильная форма удержания, чем, например свинца в костном скелете. Для диоксинов не существует таких норм, как ПДК, - эти вещества токсичны при любых концентрациях, меняются лишь формы проявления Д-токсикации организма. Содержание Д в пищевых продуктах определяется главным образом их жирностью. Больше всего содержание Д в жирных сортах рыбы и мяса, масле, сырах. Об этом не следует забывать, т.к. основное количество Д в организм попадает не с водой и воздухом, а с пищей.

2.3. Кислотные дожди.

Дождевая вода часто содержит различные природные и антропогенные химические вещества, в том числе кислотного характера . Наиболее естественной является вода с рН =5,6. Дождевая вода считается кислой, если ее рН < 5. Кислотные дожди (рН <5) характерны для высокоурбанизированных областей Западной Европы, США и Японии, но отмечены также и в удаленных океанических районах. В дождевой воде обнаружены в основном серная, азотная, муравьиная и уксусная кислоты. Их предшественниками являются диоксид серы, диоксид азота и органические соединения.

Образующиеся в атмосфере кислоты входят в состав туманов, облачных и дождевых капель. Причем, концентрация примесей у поверхности земли наибольшая и поэтому в туманах наибольшая концентрация примесей кислот. Таким образом, для сельского хозяйства и огородов более пагубны туманы. На высоте нескольких километров, где существуют облачные капли, концентрация примесей в атмосфере значительно меньше, чем у поверхности. При образовании дождя происходит разбавление облачных капель и, соответственно, кон-

центрация примесей и кислот еще сильнее понижается. Образовавшиеся кислоты выводятся из атмосферы дождями примерно 7 суток. При этом кислоты попадают в водоемы, на растительность, почву и различные объекты человеческой деятельности (здания, памятники и т. д.).

Кислотные дожди и озера. Величина рН пресноводных водоемов лежит в интервале 6-8. Закисление внутренних водоемов стало носить массовый характер в США и странах Западной Европы особенно во второй половине ХХ столетия. Последствия закисления хорошо известны. Для рыб наиболее благоприятными являются условия при рН в интервале от 6,5 до 8,5. Снижение рН воды особенно пагубно для таких пород рыб, как форель, плотва: при рН 5,6-4,6 наблюдается массовая гибель рыбы. Особенно сильно закисление воды влияет на развитие икры и мальков. Способность рыб к размножению начинается резко снижаться при рН = 5,5, а при рН < 4,5 размножение рыб прекращается.

Кислотные дожди и растения. Низшие растения сильнее подвержены действию кислотных дождей, чем высшие, что проявляется в сокращении видового разнообразия. Влияние газообразного диоксида серы на высшие растения не всегда носит негативный характер. В малых концентрациях (100 ppt) диоксид серы служит в качестве питания для растений и предотвращает образование грибковых заболеваний. При концентрациях, которые в настоящее время характерны для большинства районов земного шара (10ppb и менее), диоксид серы не должен оказывать заметного влияния на растения. Урожайность зерновых культур не снижается при воздействии диоксида серы в концентрации 100ppb и выше. Негативное влияние оксидов серы и азота существенно проявляется в сочетании с озоном.

Кислотные дожди и почва. Для наиболее эффективного произрастания растений почва должна иметь рН в интервале 5 – 7. Кислотные дожди с рН = 4 и менее, могут существенно ухудшить плодородие почвы. Если величина рН почвы равна 3, то на таких землях уже практически ничего не может произрастать. Так, например, крупные предприятия цветной металлургии (Братск, Норильск) оказывают негативное влияние на состояние лесов в радиусе до 150 км.

К-во Просмотров: 267
Бесплатно скачать Реферат: Человек как творческий экологический фактор. Основные направления и результаты антропогенных изменений в окружающей среде. Компенсационные механизмы и возможности среды в этих условиях