Реферат: Численный расчет диода Ганна
Что и дает соотношение между временами миждолинного перехода.
Рассмотрение баланса импульса следует проводить в предположении, что после перехода из долины в долину средний импульс перешедших электронов равен нулю, и они должны будут набирать характерный импульс miVi.
Тогда в нижней долине баланс импульса запишется в виде:
В данной формуле tm1 – среднее время релаксации по импульсу в нижней долине. Отсюда для соотношения между скоростью и полем, т.е. подвижностью в нижней долине можно получить такое соотношение:
Таким образом получается, что подвижность зависит от интенсивности междолинных переходов. Аналогично для верхней долины можно записать
В итоге для статической характеристики в рамках двухтемпературной модели получаем систему трансцендентных уравнений
Решая эту систему, можно получить зависимость:
Сравнивая данную зависимость, полученную теоретически, с экспериментальной зависимостью скорость-поле, можно подобрать значения постоянных времени. Расчеты показывают, что оптимальными являются параметры:
t21=2,0·10-12 сек,
te1=0,8·10-12 сек,
tm1=0,4·10-12 cек.
Динамическая двухтемпературная модель
Основные уравнения двухтемпературной модели имеют вид:
Уравнение Пуассона
Уравнения сохранения заряда для нижней и верхней долин
Уравнение сохранения энергии для нижней долины
Кроме того, необходимы граничные условия, имеющие вид
Два последних граничных условия являются неточными и для снижения погрешности от этой неточности необходимо в приконтактной области задавать область повышенного легирования.
Начальные условия точно заданы быть не могут. Однако, если метод решения уравнения выбран правильно, то независимо от начальных условий через некоторое время счета задача сойдется к правильному решению. Типичным видом записи начальных условий является запист в виде:
Е=VD/L, n1=n0, n2=0, T1=T0.
Уравнения, описывающие процессы в кристалле, должны быть дополнены уравнениями внешней схемы. Наиболее простыми и распространенными вариантами задания внешней схемы являются такие подходы:
1. Решение самосогласованной задачи с внешней схемой в виде колебательного контура;
2. Метод заданного напряжения.
В первом случае в явном виде записываются дифференциальные чравнения внешней схемы и решаются совместно с уравнениями, описывающими процессы в кристалле. Этот метод называется также решением во временной области и используется, как правило, для исследования переходных процессов.
Во втором случае, называемом также решением в частотной области, параметры внешней схемы задаются в виде напряжения, приложенного к кристаллу, например, в виде
Перебирая значения V0,V≈,Ω, точно так же, как и параметры кристалла, можно получить полную информацию о величине отрицательного дифференциального сопротивления и его зависимости от параметров внешней схемы и структуры кристалла, и, как следствие, об энергетических характеристиках.
Суть метода в том, что задав внешнее напряжение на кристалле путем решения уравнений, описывающих процессы в кристалле, находим полный ток через кристалл:
Разложив его в ряд Фурье, получим: