Реферат: Диагностика с помощью ядерного магнитного резонанса
при n о ³ 5 МГ ц . В РЧ- катушке соленоидального вида поле В1 для единичного тока равно
В1 0 = ´ n >> 1 ,
где а - радиус катушки ; 2b - ее высота ; m 0 - восприимчивость свободного пространства ; n - число витков в катушке. С учетом скин - эффекта электрическое сопротивление катушки
R 3/2 * h * ( r a n2 ) / (2 d g) @ n >> 1,
6
где r - сопротивление катушки ; h » 3 - 6 - фактор близости ; d - толщина скин-слоя. В области частот n 0 £ 1МГц отношение сигнала к шуму измеряется как степень 7/4 от лармовой частоты . При высоких частотах , когда основные потери РЧ- мощности происходят в образце , это соотношение переходит в линейное . Для объектов больших размеров , например для тела человека , необходимо учесть скин- эффект и электрическое сопротивление тканей , которое равно » 1 W , а толщина скин- слоя составляет 80 мм при n 0 = 40 МГц . Из-за ослабления РЧ- поля угол нутации q становится функцией глубины z :
q p / 2 = B1 0 tp exp(- z/ d ).
Разброс угла нутации по глубине компенсируют , выбирая для каждой глубины z соответствующую амплитуду РЧ- поля.
Моделирующие расчеты эффектов ослабления и сдвига по фазе электромагнитного поля в различных тканях человека показывают , что в ЯМР- интроскопах , предназначенных для получения ЯМР- изображений человека , частота Лармона не должна быть более 10 МГц .
Тело человека , помещенное в РЧ- катушку ЯМР- интроскопа , можно рассматривать как электрическое сопротивление с Z = 1.87 W , которое включено последовательно с электрическим сопротивлением соленоидальной РЧ- катушки , имеющей R = =1.56 W . При этом полное эффективное сопротивление равно R’ = R + Z = 3.43 W . Амплитуда шума Un возрастает в = раза . Именно во столько раз (и не больше!) возрастает отношение сигнала к шуму , если охладить РЧ- катушку до сверхпроводящего состояния . Приведенная выше оценка отношения сигнала к шуму верна для прямого метода сканирования , и во всех интегральных и многопланарных методах получения ЯМР- изображений отношение сигнала к шуму в эквивалентных условиях значительно выше . Указанный фактор позволяет снизить требуемое время получения ЯМР- изображения вплоть до 1с.
Важное преимущество методов интроскопии при помощи ядерного магнитного резонанса в том , что здесь нет ионизирующего излучения . Этот факт стал решающим стимулом быстрого распространения ЯМР- интроскопов в клиниках . В процессе съема данных о ЯМР- изображении тело человека подвергается действию трех агентов : статического магнитного поля , переключаемых или осцилирующих градиентных магнитных полей , а также импульсных радиочастотных полей . Статическое магнитное поле может вызвать генетические или биохимические эффекты , а также эффекты на клеточном уровне . Вплоть до индукции магнитного поля 2 Тл указанных эффектов не наблюдалось . Статическое магнитное поле может изменять скорость распространения импульсов электрического поля по нервам . Согласно теоретическим оценкам , изменение указанного фактора на 10% должно наступить в полях с индукцией 24 Тл и более . В экспериментах , проведенных в магнитном поле 2 Тл в течение 4ч никаких изменений в скорости проводимости нервов обнаружено не было . Искомое явление маскирует эффект изменения температуры тела . Повышение температуры тела на 0.1 ° С приводило к вариациям рассматриваемого фактора на 2 - 4 %.
В сильных магнитных полях наблюдают аномалии в электрокардиограмме сердца . При движении крови в магнитном поле возникает дополнительная ЭДС . Наблюдаемый эффект , который растет линейно с индукцией магнитного поля вплоть до 2 Тл и исчезает сразу же после выключения статического магнитного поля , используют для изучения потока крови в сердце . При этом не возникают ни аритмия , ни изменения в
7
частоте сокращения сердца , ни изменения в давлении крови и не происходит никаких химических изменений .
Исследование поведения бактерий и генетические исследования лимфоцитов крови человека при помощи методики , очень чувствительной к слабым примесям токсических веществ и к ультрафиолетовому облучению , не позволили обнаружить какие- либо вредные эффекты вплоть до индукции магнитного поля » 1 Тл.
Переключаемые и осцилирующие градиентные магнитные поля могут создать недопустимо высокие значения внутренней ЭДС . При скорости переключения 3 Тл/с возникают электрические токи с плотностью около 3 мкА/см2 , которые могут вызвать нетепловые биологические эффекты . Количественный анализ показал , что для градиентной катушки диаметром 20 см допустимое значение скорости переключения магнитного поля равно dB/dt = 1 Тл/с . Это значение лежит ниже порога возбуждения нервов ( » 3 * 103 мкА/см2 ), порога свертывания крови в сердце (102 - 103 мкА/см2 ), порога наблюдения вспышек света в глазах человека под действием электродов на голове человека ( » 17 мкА/см2 ), а также порога эффекта магнитных фосфенов ( » 5 мкА/см2 ). Специальные эксперименты показали , что патологические изменения в крови отсутствуют при скорости переключения магнитного поля » 500 Тл/с . Было замечено , что порог указанных эффектов зависит также от формы функции , описывающей вариации магнитного поля во времени . Синусоидальные сигналы не создают практического вреда в интервале частот 30 - 65 Гц и только асимметричные формы сигналов дают заметные изменения этих факторов на пациентах .
Радиочастотное поле ЯМР- интроскопа создает нагрев тканей . Установленный верхний порог равен 4 Вт/кг при времени воздействия менее 10 мин. и 1.5 Вт/кг при длительном облучении. Основной обогрев происходит на поверхности тела . Тело теряет тепло за счет излучения и прямого охлаждения . При низкой влажности воздуха и мощности облучения 4 Вт/кг в течение 10 мин. температура тела повышается на 0.7 ° С .
Тепло , выделяемое в тканях человека во время сеанса облучения РЧ- полем , измеряют по добротности системы с пациентом и без пациента .
Наблюдения за поведением отдельных клеток , поиск генетических повреждений и аберраций в хромосомах показали , что комплекс факторов , характерных для ЯМР- интроскопии , не создает вредных эффектов .
ЯМР- изображения несут важную информацию о химии физиологических процессов , о структуре и динамике тканей на молекулярном уровне и как следствие этого дают принципиально новые возможности для медицинской диагностики . Это свойство и безвредность ЯМР- интроскопии стали решающим стимулом быстрого внедрения ЯМР- интроскопии в медицинские клиники . Современные ЯМР- интроскопы дают пространственное разрешение 1 ´ 1 ´ 4 мм при времени получения изображения около 100 с, позволяют одновременно получать локализованные спектры химических сдвигов ядер 31 Р и 13 С в естественной концентрации . Одновременно или с небольшим разрывом во времени можно получить как анатомическую информацию , так и данные об обмене веществ в тканях (метоболизме) . Время получения спектра 31 Р равно 10 и 16 мин. для спектра 13 С . Положение и относительные интенсивности пиков в спектре 31 Р указывают на отклонения от нормы в тканях под действием ишемии , злокачественной опухоли , нарушения обмена и демонстрируют результаты терапии . Спектры 13 С содержат информацию об уровне триглицерида и гликогена . На ЯМР- изображениях можно отобразить:
Время спин- решеточной релаксации Т1 ;
8
2.Время спин- спиновой релаксации Т2 ;
3.Коэффициент диффузии молекул ;
Особенно ценную информацию несут ЯМР- изображения сосудистой системы , спинового мозга , головного мозга , легких и средостения . Все случаи злокачественных опухолей , обнаруживаемых при помощи реконструктивной рентгеновской томографии , идентифицируются на ЯМР- изображениях ядра водорода . Накоплен большой опыт клинического исследования головного мозга человека при помощи ЯМР- интроскопии . Всего было обследовано 140 пациентов с широким спектром неврологических заболеваний . Преимущество ЯМР- изображений в том , что на них серое вещество мозга отображается с высоким контрастом , который недоступен для рентгеновской реконструктивной томографии . Отсутствуют артефакты , создаваемые костными тканями в рентгеновской реконструктивной томографии , отображаются параметры о потоке жидкостей.
Большой набор параметров на ЯМР- изображениях позволяет с высокой достоверностью обнаружить такие патологические процессы , как эдема , инфекции , злокачественные опухоли и перерождения ткани . Особенно высокую чувствительность к мозговой эдеме дают сигналы спинового эха . Главный недостаток ЯМР- интроскопии в том , что на ЯМР- изображениях нет информации о структуре костей . Для этой цели необходимо использовать реконструктивную рентгеновскую томографию .
ЯМР- интроскопия дает уникальную возможность своевременно обнаружить образование миелита в развивающемся плоде и при оценке мозговых нагноений у детей.
Результаты первого опыта использования ЯМР- интроскопии в педиатрии являются обнадеживающим . При помощи планарного метода получения ЯМР- изображений с регистрацией эхо- сигнала за малые доли секунды получают изображения легких , сердца , и средостение без артефактов движения . Иначе говоря , съем данных ведут в реальном масштабе времени . Время получения изображения с разрешением 6 мм и толщиной 8 мм равно 35 мс . Сигналом - монитором является электрокардиограмма . За 4.5 минуты получают 512 ЯМР- изображений - 32 среза с 16 кинокадрами на каждый срез . Таким образом , регистрируемые данные имеют четырехмерную структуру . С помощью ядерного магнитного резонанса получены результаты обследования детей в возрасте от 3 до 14 месяцев и сняты изображения левого желудочного сердца . Методы ангиографии были в этих случаях бессильны .
Описаны случаи , когда злокачественные опухоли в головном мозге на раннем этапе развития были обнаружены только на ЯМР- изображениях и были едва заметны на рентгеновских томограммах .Эти и другие исследования убедительно свидетельствуют о том , что в нейрологической диагностике наступает новая эра .
В других работах было показано экспериментально , что анатомическая информация и данные о метаболизме в головном мозгу человека могут быть получены на одной установке . Вопреки общепринятым представлениям , был построен ЯМР- интроскоп для головного мозга человека на очень высокой резонансной частоте 63.9 МГц при индукции магнитного поля 1.5 Тл и щелевом резонаторе РЧ- поля . Было достигнуто повышение отношения сигнала к шуму в 11 раз по сравнению с системой , работающей в магнитном поле с индукцией 0.12 Тл . Локализованные ЯМР- спектры высокого разрешения 31 Р , 13 С и 1 Н были получены при помощи поверхностной катушки . Таким образом , метод получения совместных данных об анатомии и о биохимии тканей в мозгу человека становится традиционным .
9
ЗАКЛЮЧЕНИЕ
История науки учит нас , что каждое новое физическое явление или новый метод проходит трудный путь , начинающийся в момент открытия данного явления и проходящий через несколько фаз . Сначала почти никому не приходит мысль о возможности , даже весьма отдаленной , применения этого явления в повседневной жизни , в науке или технике . Затем наступает фаза развития , во время которой данные экспериментов убеждают всех в большой практической значимости данного явления. Наконец , следует фаза стремительного взлета . Новые инструменты входят в моду , становятся высокопродуктивными , приносят большую прибыль и превращаются в решающий фактор научно- технического прогресса . Приборы , основанные на когда-то давно открытом явлении , заполняют физику , химию , промышленность и медицину.
Наиболее ярким примером изложенной выше несколько упрощенной схемы эволюции служит явление магнитного резонанса , открытое Е. К. Завойским в 1944 г. в форме парамагнитного резонанса и независимо открытого Блохом и Парселлом в 1946 г. в виде резонансного явления магнитных моментов атомных ядер . Сложная эволюция ЯМР часто толкала скептиков к пессимистическим заключениям . Говорили, что “ ЯМР мертв “ , что “ ЯМР себя полностью исчерпал “ . Однако вопреки и наперекор этим заклинаниям ЯМР продолжал идти вперед и постоянно доказывал свою жизнеспособность . Много раз эта область науки оборачивалась к нам новой , часто совсем неожиданной стороной и давала жизнь новому направлению . Последние революционизирующие изобретения в области ЯМР , включая удивительные методы получения ЯМР- изображений , убедительно свидетельствуют о том , что границы возможного в ЯМР действительно безграничны . Замечательные преимущества ЯМР- интроскопии , которые будут высоко оценены человечеством и которые сейчас являются мощным стимулом стремительного развития ЯМР- интроскопии и широкого применения в медицине , заключаются в очень малой вредности для здоровья человека , свойственной этому новому методу.