Реферат: Диалектика, если ее разъяснить

Из посылки р (например, 'Сократ мудр') с полным правом можно вывести любое заключение формы 'р V q' (например: 'Сократ мудр V Петр - царь').

Мы сразу же поймем необходимую общезначимость этого правила, если вспомним о значении 'V'. Этот символ создает составное высказывание, которое истинно всегда, когда истинно, по крайней мере, одно из его составляющих. Соответственно, если р истинно, то р V q тоже обязательно истинно. Таким образом, наше правило никогда не может приводить от истинной посылки к ложному заключению, а это и означает, что оно общезначимо.

При всей своей общезначимости первое правило вывода часто поражает непривычных к таким вещам людей - оно кажется им странным. И действительно, это правило редко применяется в повседневной жизни, поскольку его вывод содержит гораздо более скудную информацию, чем посылка. Однако иногда оно все же применяется, например при заключении пари. Скажем, я могу дважды подбросить монету, побившись об заклад, что орел выпадет по крайней мере один раз. Это очевидным образом равносильно поручительству за истинность составного высказывания 'орел выпадет при первом подбрасывании монеты V орел выпадет при второй попытке'. Вероятность (в обычном смысле слова) такого высказывания равна 3/4; таким образом, оно отлично от высказывания 'орел выпадет при первой попытке или орел выпадет при второй попытке (но не дважды)', вероятность которого равна 1/2 Всякий признает, что я выиграл пари, если орел выпал при первом подбрасывании монеты, - иными словами, что составное высказывание, за истинность которого я поручился, должно быть истинно, если истинно первое его составляющее; это показывает, что мы рассуждали в соответствии с первым правилом вывода. что читается так: 'из посылки р получаем следствие р V q'. Второе правило вывода, которым я собираюсь воспользоваться, более привычно. Если отрицание р мы обозначим как не-р, то правило можно сформулировать в словесной форме: Из двух посылок не-р и р V q мы получаем заключение q

Общезначимость этого правила можно считать установленной, если принять, что высказывание не-р истинно только в том случае, когда р ложно. Соответственно, если первая посылка не-р истинна, тогда первое составляющее второй посылки ложно; следовательно, если обе посылки истинны, то второе составляющее второй посылки должно быть истинно; это означает, что q должно быть истинно всякий раз, когда обе посылки истинны.

Условливаясь, что если не-р истинно, то р должно быть ложно, мы имплицитно употребляем 'закон противоречия', утверждая, что не-р и р не могут быть истинны одновременно. Поэтому если бы моей задачей в настоящий момент было привести доводы в защиту противоречия, мы должны были бы насторожиться. Однако в данный момент я пытаюсь только показать, что, применяя общезначимые правила вывода, мы можем вывести из пары двух противоречащих посылок любое заключение.

Применяя наши два правила, мы действительно можем показать это. Допустим, имеются две противоречащие друг другу посылки, скажем:

(а) Солнце сейчас сияет.

(b) Солнце сейчас не сияет.

Из этих двух посылок можно вывести любое высказывание, например, 'Цезарь был предателем'.

Из посылки (а) мы можем вывести, согласно правилу, следующее заключение:

(c) Солнце сейчас сияет V Цезарь был предателем. Взяв теперь в качестве посылок (b) и (с), мы можем в конечном счете вывести, согласно правилу:

(d) Цезарь был предателем.

Ясно, что с помощью того же метода мы могли бы вывести и любое другое высказывание, например, 'Цезарь не был предателем'. Так что из '2 + 2 = 5' и '2 + 2 не= 5' мы можем вывести не только то высказывание, какое бы нам хотелось, но также и его отрицание, которое могло и не входить в наши планы.

Отсюда мы видим, что если теория содержит противоречие, то из нее вытекает все на свете, а значит, не вытекает ничего. Теория, которая добавляет ко всякой утверждаемой в ней информации также и отрицание этой информации, не может дать нам вообще никакой информации. Поэтому теория, которая заключает в себе противоречие, совершенно бесполезна в качестве теории.

Ввиду важности проанализированной нами логической ситуации, я представлю теперь несколько других правил вывода, которые приводят к тому же результату. В отличие от, те правила, которые мы сейчас рассмотрим, составляют часть классической теории силлогизма, за исключением правила, которое мы обсудим первым.

Несмотря на всю непривычность этого правила и на то, что его не признают некоторые философу[7], это правило несомненно общезначимо: ведь оно безошибочно приводит к истинному заключению всегда, когда истинны его посылки. Это очевидно и действительно тривиально; и сама тривиальность делает это правило, в обычном рассуждении, избыточным, а потому и непривычным. Однако избыточность не есть несостоятельность.

В дополнение к правилу (3), нам понадобится еще одно правило, которое я назвал 'правилом косвенной редукции' (поскольку в классической теории силлогизма оно имплицитно используется для косвенного сведения 'несовершенных' фигур к первой, или 'совершенной', фигуре). Предположим, имеется общезначимый силлогизм:

(а) Все люди смертны.

(b) Все афиняне люди.

(с) Все афиняне смертны.

Например, в силу общезначимости вывода (с) из посылок (а) и (b) силлогизм

(а) Все люди смертны (не-с)

Некоторые афиняне не смертны (не-b)

Некоторые афиняне - не люди также должен быть общезначимым.

Правило (5) может быть получено, например, из правила (4) вместе с законом двойного отрицания, согласно которому из не-не-b можно вывести b. Однако если (5) значимо для любого высказывания а, b, с (и значимо только при этом условии), тогда оно должно быть значимо и в том случае, если с окажется тождественно а.

Но (7) устанавливает в точности то, что мы хотели показать, а именно: из двух противоречащих посылок можно вывести любое заключение.

Может возникнуть вопрос, распространяется ли это положение на любую систему логики или же можно построить такую систему, в которой из противоречащих друг другу высказываний не следовало бы какое угодно высказывание. Я специально занимался этим вопросом и пришел к выводу, что такая система возможна. Она оказывается, однако, чрезвычайно слабой. В ней сохраняются лишь очень немногие из обычных правил вывода, не действует даже modus ponens, устанавливающий, что из высказываний формы 'Если р, то q' и р мы можем вывести q. По моему мнению, подобная система совершенно непригодна для вывода заключений, хотя и представляет, возможно, некоторый интерес для тех, кто специализируется на построении формальных систем.

Иногда говорят, что факт следования из двух противоречащих высказываний любого высказывания не доказывает бесполезности противоречивой теории: во-первых, теория может представлять интерес сама по себе, несмотря на всю свою противоречивость; во-вторых, в нее можно внести поправки, которые сделают ее непротиворечивой; и наконец, можно придумать метод, пусть даже метод ad hoc (каковы, например, методы избежания расхождений в квантовой теории), который предотвратит ложные заключения, требуемые самой логикой теории. Все это абсолютно верно, но при всех поправках такая паллиативная (makeshift) теория является источником серьезных опасностей, ранее нами обсуждавшихся: если мы действительно хотим примириться с этой теорией, тогда ничто не заставит нас искать лучшей теории, и наоборот: если мы ищем более совершенной теории, то только потому, что считаем данную теорию плохой вследствие содержащихся в ней противоречий. Примирение с противоречием обязательно приводит нас в этом случае, как и всегда, к отказу от критики, а значит, - к краху науки.

Мы видим здесь, насколько опасна неопределенная и метафорическая речь. Расплывчатое утверждение диалектиков, что противоречия неизбежны и что избавляться от них даже нежелательно, поскольку они так плодотворны, ведет к опасному заблуждению. Оно приводит к заблуждению, поскольку так называемая плодотворность противоречий, как мы видели, есть просто результат нашего решения не мириться с ними (следуя закону противоречия). И оно опасно, поскольку мнение, что от противоречий избавляться не следует или вообще невозможно избавиться, с необходимостью приводит к концу и науки и критики, то есть к концу рациональности. Надо подчеркнуть, что для всякого, кто хочет утверждать истину и содействовать просвещению, является необходимостью и даже долгом упражнять себя в искусстве выражать вещи ясно и недвусмысленно, даже если это означает отказ от утонченной метафоричности и глубокоумной двусмысленности.

К-во Просмотров: 176
Бесплатно скачать Реферат: Диалектика, если ее разъяснить