Реферат: Динамика подводных лодок

Работы по обеспечению прочности и рациональному конструированию корпусов глубоководных аппаратов (ГА) приобрели самостоятельное значение в 60-х годах.

Накопленный к концу 70-х - началу 80-х годов опыт создания глубоководных аппаратов, анализ проведенных теоретических и экспериментальных исследований в области прочности позволили разработать “Основные положения по методам расчета и нормам прочности прочных корпусов глубоководных аппаратов” (1981г.). Исследования прочности, несущей способности и работоспособности корпусов объектов глубоководной техники, на базе уже имеющихся данных, продолжались на новом качественном уровне. Были решены задачи прочности, устойчивости и надежности корпусов, состоящих из цилиндрических и сферических оболочек с учетом фактической точности их изготовления, определены пределы снижения несущей способности корпусов в зависимости от принятых допусков, подтверждена эффективность обработки поверхности (В.Р.Ибнояминов, Ю.П.Шишалов, В.М.Греков).

Новое направление исследований в 90-е годы - обращение к малопластичным материалам с высокой удельной прочностью. Проблема их внедрения стала весьма актуальной, поскольку применяемые материалы исчерпали свою возможность, не позволяя рассчитывать на сколько-нибудь существенное снижение массы корпусов или увеличение глубины погружения. Выполненные в 1990-1993гг. исследования подтвердили принципиальную возможность получения приемлемых показателей надежности изделий к конструкции корпусов и технологии их изготовления, выявили круг основных вопросов, требующих дальнейшего решения.

Особенностью надводного судостроения в 50-е годы были: переход полностью на сварные корпуса, широкое применение высокопрочных легированных сталей, повышение мощности и скорострельности артиллерийского вооружения, создание и опытная эксплуатация корабельного реактивного оружия и высокие эксплуатационные скорости кораблей малого и среднего водоизмещения. Появилась новая архитектура кораблей с удлиненным корпусом, развитыми надстройками, чисто продольной системой наборов корпуса. Для обеспечения проектирования кораблей нового поколения был проведен большой объем исследовательских работ.

Прежде всего, были рассмотрены особенности деформирования цельносварного корпуса корабля при действии статических и динамических нагрузок. Для этой цели выполнен комплекс теоретических исследований и проведены натурные статические испытания кораблей проектов 50 и 68 на прогиб и перегиб при нагрузке на опорах в доке. Были проведены натурные мореходные испытания этих кораблей с измерением деформаций основных продольных связей корпуса при движении с различными скоростями на волнении различной бальности.

Исследования показали, что при расчетах общей прочности корабля необходимо учитывать динамическую составляющую изгибающих моментов, которая при высоких скоростях движения может быть сопоставима со статической составляющей и даже превосходить ее. Необходимость более полного учета работы несущих связей корпуса корабля при его общих деформациях предопределила проведение тщательного изучения работы отдельных связей в составе перекрытия при различных видах нагрузки, устойчивости пластин и жестких связей в составе сложных конструкций. Это дало существенный толчок к развитию строительной механики корабля (Ю.А.Шиманский, Г.О.Таубин, А.А.Курдюмов, Н.С.Соломенко).

Переход к более прочным сталям и соответствующее уменьшение размеров несущих связей и повышение их нагружености потребовало более детального исследования влияния концентрации напряжений в районах вырезов и окончания прерывистых связей. На основе теории Ю.А.Шиманского (“Проектирование прерывистых связей судового корпуса”, 1949г.), а также большого количества теоретических и экспериментальных работ и успешного опыта проектирования были разработаны “Положения по конструированию корпусов надводных кораблей”, 1957г. (Ю.А.Шиманский, Г.С.Чувиковский, Г.О.Таубин, Б.П.Кузовенков, Н.Л.Сивере, В.П.Белкин, А.А.Карпов).

Появление на кораблях ракетного оружия поставило перед судостроением ряд новых, нетрадиционных задач. При старте ракет на близлежащие конструкции корпуса от газовой струи ракетного двигателя действуют большие внешние давления (до 30 кгс/см2 ) при одновременном интенсивном тепловом воздействии (температура газовой струи 2000-4000°С), что принципиально отличает этот вид нагрузок от традиционных гидродинамических. Те же нагрузки, только более продолжительные во времени, воздействуют на конструкции погребов хранилищ ракетного оружия при несанкционированном срабатывании ракетного двигателя.

Требования, методы расчетов прочности, конструирования, а также защиты конструкций, расположенных в зоне действия газовых струй ракетных двигателей, были разработаны на основе исследования газо- и термодинамических особенностей таких струй и обобщения результатов систематических модельных и натурных испытаний (В.А.Никитин, Ю.А.Зимницкий, В.Г.Бессонов, А.А.Карпов).

В конце 50-х годов определилась необходимость создания кораблей противоминной обороны (тральщиков) водоизмещением 300-600т с корпусами из немагнитных материалов, что привело к идее использования стеклопластика. Этот материал является нетрадиционным для судостроения и обладает рядом специфических особенностей. Он создается одновременно с изготовлением конструкции, отличается существенной анизотропией механических свойств, относительно низким модулем упругости, склонностью к ползучести даже при нормальной температуре и т.д. В связи с этим необходимо было заново разрабатывать методы определения напряженно-деформированного состояния корпуса, нормы опасных и допустимых напряжений, принципы конструирования.

Первый в мире тральщик из стеклопластика водоизмещением 280 т был спущен на воду в 1964г. и вступил в строй в 1965г. Корабль находился в строю до конца 80-х годов.

В 90-е годы велись исследования по оценке ресурса кораблей, находящихся в эксплуатации более 15-20 лет, разрабатывались концепция обеспечения прочности кораблей нетрадиционной архитектуры (катамараны, корабли с малой площадью ватерлинии, корабли с усиленной ледовой защитой), комплексный подход к оценке прочности корпуса корабля по результатам мореходных испытаний и др.

Опыт создания первых отечественных КПК и экранопланов показывает, что для КДПП характерно многообразие архитектурных форм, компоновочных, конструктивных и технологических решений. Они до настоящего времени еще окончательно не установились и претерпевают значительные изменения от проекта к проекту. Расчетные методы, используемые для проверки прочности конструкций, в значительной мере носят сопоставительный характер и поэтому не могут гарантировать безопасность и ресурс конструкций при наличии нетрадиционных конструктивных и технологических решений и изменений условий эксплуатации. По этим причинам НИИ и КБ вынуждены были по примеру авиастроителей обратиться к широкому проведению экспериментальных работ для обеспечения прочности КДПП. Такой подход нашел отражение в требованиях к конструкции и прочности корпусов, разработанных под руководством Б.П.Кузовенкова в положениях по расчетно-экспериментальной проверке прочности конструкций КПК, СВП и кораблей-экранопланов (1976г.).

В 80-х годах акцент в развитии КДПП делался на создании кораблей большого водоизмещения (СВП “Зубр”, “Сивуч”). Для этого потребовалось использование новых высокопрочных материалов и решение проблем обеспечения прочности конструкций, испытывающих в эксплуатации высокие уровни напряжений.

В частности, были уточнены способы расчетного определения внешних сил, действующих на конструкции, с учетом динамики упругого пространственного деформирования конструкций (Ю.В.Бельгов, Г.Б.Крыжевич); созданы пакеты прикладных программ для расчета напряженно-деформированного состояния сложных конструкций (Е.Я.Вороненок, А.Ю.Бабурин, Е.А.Шишенин и др.); предложены новые нормы прочности и расчета конструкций, базирующиеся на теории надежности и механике разрушения (Ю.В.Головешкин, С.Д.Кноринг, Г.Б.Крыжевич, Н.И.Тузлукова); изучены особенности работы резинотканевых конструкций в эксплуатационных условиях и предложены на основе экспериментальной отработки рациональные конструктивные решения для узлов гибких ограждений больших КВП (М.В.Филиппео, М.Е.Алешин, Ю.Г.Ефимов, Д.С.Комиссаров и др.). Испытания этих кораблей и их эксплуатация подтвердили высокую надежность конструкций. По критерию весового совершенства они не уступают лучшим зарубежным, а по водоизмещению и некоторым другим параметрам превосходят их.

Вибрация

На первых цельносварных кораблях ВМФ, построенных в начале 50-х годов, вскоре после сдачи их флоту, наблюдалось массовое появление усталостных трещин в корпусных конструкциях машинных отделений и кормовой оконечности на протяжении до 1/4 длины корабля. На многих из них отмечалась также повышенная вибрация корпуса, препятствовавшая нормальной эксплуатации механизмов, точных приборов и вооружения.

Новизна возникшей проблемы и сложность физической картины происходящих при этом явлений обусловили многоплановый характер последующих исследований. С первых же шагов наметились два основных направления: исследование динамических характеристик и общей ходовой вибрации корпуса и исследование местной вибрации корпусных конструкций и обеспечение их вибрационной прочности. Для решения этих проблем требовалось прежде всего совершенствование виброизмерительной техники, создание специального оборудования, в частности, вибровозбудителей эксцентрикового типа, а также соответствующих стендов.

В результате проведенных исследований были изучены физическая природа, характер возбуждения и распространения вибрации по корпусу и его конструкциям. Для практических нужд надводного кораблестроения разработаны методы расчетного прогнозирования (на стадии проектирования корабля) уровней ходовой вибрации его корпуса, а также динамических характеристик таких корпусных конструкций, как стенки цистерн, переборок и наружной обшивки. Это потребовало создания и существенного развития общей теории вибрации корабля, основы которой были заложены академиками А.Н.Крыловым и Ю.А.Шиманским.

В работах Н.Н.Бабаева, С.Д.Дорофеюка, В.С.Чувиковского, В.Г.Лентякова, А.К.Сборовского и ряда других сотрудников ЦНИИ им.академикаА.Н.Крылова, а также специалистов 1-гоЦНИИМО Я.Ф.Шарова, В.Д.Боярского и других исследованы характеры и закономерность распространения вибрации на ряде кораблей ВМФ, разработаны методы практических расчетов общей ходовой вибрации корпуса и корпусных конструкций, принципы их рационального проектирования. Одновременно установлены нормы, ограничивающие амплитуды колебаний корпуса надводного корабля, и нормы, обеспечивающие вибрационную прочность его корпусных конструкций. Были исследованы: особенности вибрации основных типов кораблей с динамическими принципами поддержания, завершившиеся разработкой рекомендаций по расчетной оценке параметров их ходовой вибрации; вибрация крыльевых устройств КПК; разработана схема определения критической скорости флаттера. По результатам исследований составлены методика и требования к выполнению расчетов вибрации корпуса и крыльевых устройств КПК.

В обеспечение проектирования надводных кораблей с развитым авиационным вооружением исследована вибрация большепролетных палубных перекрытий этих кораблей и разработаны рекомендации по выбору их конструкций, исходя из необходимости предотвращения возможности их повышенной вибрации.

Значительное место в комплексе работ по обеспечению необходимых вибрационных качеств надводных кораблей занимали также систематически проводившиеся вибрационные испытания головных кораблей. Были спроектированы и созданы ряд виброгенераторов большой мощности для лабораторных и натурных вибрационных исследований, стенды усталостных испытаний в агрессивной среде, имитирующей морскую воду, крупногабаритных образцов различных типов сварных соединений элементов корпусных конструкций, а также вибропреобразователи повышенной чувствительности в расширенном диапазоне частот. Руководителями и основными творческими исполнителями этих работ явились Е.Н.Щукина, Э.И.Иванюта, Ю.Н.Шавров, Ю.А.Никольский, О.Н.Лычев, В.И.Поляков, Ф.П.Щуйгин и др.

Необходимость активного воздействия на уровни вибрации корпусов подводных лодок обусловливалась увеличением скоростей их подводного хода, а также предъявлением к ПЛ повышенных требований в отношении их акустической скрытности. На начальном этапе для оценки ожидаемых уровней ходовой вибрации подводных лодок в процессе их проектирования использовались методы, разработанные для надводных кораблей, откорректированные с учетом наиболее существенных отличий.

С середины 60-х годов, в связи с общей проблемой повышения акустической скрытности ПЛ, выполнялись теоретические исследования распределения амплитуд ходовой вибрации совместности по длине корпуса одно- и двухвальных лодок, необходимые для оценки параметров их гидроакустических полей в инфразвуковом диапазоне частот и влияния на параметры этой вибрации совместности колебаний системы “гребной винт-валопровод-ГУЛ-корпус”. Были спроектированы и построены вибрационные машины специально для возбуждения колебаний лодочных корпусов при их акустических испытаниях, выполнена строгая расчетная оценка величин гидродинамических сил от работы гребных винтов и разработаны рекомендации по методам и средствам снижения ходовой вибрации.

В последующие годы изучалось влияние на вибрацию различных конструкций ПЛ скоростного потока, в частности, рассматривались вопросы возникновения гидроупругой неустойчивости обшивки наружного корпуса в потоке, на демпфирование колебаний корпусных конструкций, поведение в потоке выступающих частей и др. Одновременно продолжались исследования общей ходовой вибрации корпуса современных ПЛ и ее связи с их внешним гидроакустическим полем с учетом конструктивных особенностей лодок. Разрабатывались расчетные математические модели и программы практических расчетов.

Взрывостойкость

После окончания второй мировой войны были кардинально пересмотрены принципы защиты кораблей от поражающего действия морского оружия. В связи с появлением ядерного оружия основным видом защиты была признана противоатомная защита (ПАЗ), призванная обеспечить взрывостойкость корпуса корабля, защиту его оборудования от ударных нагрузок, защиту экипажа от светового излучения и радиоактивного заражения.

Исследования в области ПАЗ кораблей были развернуты в начале 50-х годов. Они проводились в ЦНИИ им.академикаА.Н.Крылова под руководством члена-корреспондента АНСССР В.В.Новожилова, в филиале 12-го НИИМО под руководством Ю.С.Яковлева, в 1-м ЦНИИМО под руководством Ф.С.Шлемова, а также в ряде других организаций промышленности и Минобороны. За короткий срок (5-7 лет) трудами перечисленных ученых и руководимых ими коллективов были разработаны теоретические основы воздействия основного поражающего фактора ядерного взрыва — ударной волны на корабельные конструкции, а также первые (временные) методики расчета динамической прочности и сотрясений корпусных конструкций кораблей от воздействия подводного и воздушного ядерного взрывов. Наибольший вклад в эти работы внесли, помимо вышеуказанных руководителей работ, А.А.Александрин, Ю.В.Горяинов, Б.В.Замышляев, И.И.Дехтяр, И.Л.Дикович, М.Н.Лефонова, К.В.Лопухов, Г.С.Мигиренко, И.Л.Миронов, И.Д.Пивен, А.К.Перцев, Л.И.Слепян, Л.В.Фремке.

Изучением параметров ударной волны ядерного взрыва, в том числе вблизи свободной поверхности, занимался Институт химической физики АН СССР (академики С.А.Христианович, М.А.Садовский). Результаты теоретических исследований в этой части были экспериментально проверены при проведении натурных испытаний кораблей на действие ядерных взрывов в 1955г.

В 1958-1959гг. были проведены уникальные испытания на взрывостойкость подводной лодки проекта 613 (С-45) под научным руководством Ф.С.Шлемова. При испытаниях впервые использовались шнуровые заряды; в последующих натурных испытаниях методика их использования для имитации ударной волны подводного ядерного взрыва неоднократно совершенствовалась. На основании результатов испытаний определен безопасный радиус для дизель-электрических лодок послевоенной постройки, выявлены их слабые места в корпусных конструкциях и оборудовании, откорректированы нормативно-методические материалы по оценке взрывостойкости при воздействии ударной волны подводного ядерного взрыва. Все это позволило при проектировании атомных подводных лодок первого поколения включать в тактико-техническое задание (ТТЗ) обоснованные требования по величине безопасного радиуса (по прочности корпуса) при действии подводного ядерного взрыва.

В 60-70-е годы был проведен комплекс теоретических исследований сотрясений оборудования и вооружения подводной лодки при подводном ядерном взрыве (Ю.С.Крючков, Н.Л.Мошенский, Н.С.Каратеев), а также натурных испытаний на взрывостойкость ПЛ и натурных стендов с комплексами ракетного оружия и энергетического оборудования. На основании результатов этих исследований и испытаний разработаны руководящие технические материалы (РТМ) по обеспечению взрывостойкости ПЛ, в частности:

К-во Просмотров: 202
Бесплатно скачать Реферат: Динамика подводных лодок