Реферат: Эксклюзионная хроматография
Советские исследователи предложили теорию единого механизма жидкостной хроматографии полимеров на жестких гелях, из которой следует, что изменением параметров взаимодействия в системе полимер – сорбент – растворитель можно переходить от адсорбционного механизма к эксклюзионному и наоборот. В общем случае в эксклюзионной хроматографии нужно стремиться полностью подавить адсорбционные и другие побочные эффекты, так как они, особенно при исследовании молекулярно-массового распределения (ММР) полимеров, могут существенно исказить результаты анализа.
Принципиальными отличиями эксклюзионной хроматографии от других вариантов являются заранее известная продолжительность анализа в конкретной используемой системе, возможность предсказания порядка элюирования компонентов по размеру их молекул, примерно одинаковая ширина пиков во всем диапазоне селективного разделения и уверенность в выходе всех компонентов пробы за достаточно короткий промежуток времени, соответствующий объему Vt. Хотя данный метод применяют, главным образом, для исследования ММР полимеров и анализа макромолекул биологического происхождения (белки, нуклеиновые кислоты и т.д.), указанные особенности делают его чрезвычайно перспективным для анализа низкомолекулярных примесей в полимерах и предварительного разделения проб неизвестного состава. Получаемая при этом информация существенно облегчает выбор наилучшего варианта ВЭЖХ для анализа данной пробы. Кроме того, микропрепаративное эксклюзионное разделение часто используют в качестве первого этапа при разделении сложных смесей путем комбинации различных видов ВЭЖХ.
Ограниченный диапазон коэффициентов распределения определяет и главный недостаток эксклюзионной хроматографии – заметно меньшее, чем в других вариантах ВЭЖХ, число пиков, которые могут быть полностью разделены на колонке заданной эффективности. Однако в последнее время благодаря успехам достигнутым в технологии изготовления высокоэффективных колонок, этот метод все шире применяют и для разделения малых молекул.
Особенности аппаратуры
Аппаратура для эксклюзионной хроматографии принципиально ничем не отличается от той, которую используют в других видах ВЭЖХ. Эксклюзионное разделение можно осуществить на любом жидкостном хроматографе, установив в него соответствующие колонки. Характеристики аппаратуры влияют главным образом на точность получаемых результатов. Специфичными для данного метода являются только некоторые детекторы и особые требования к системам обработки данных.
Из всех вариантов ВЭЖХ в эксклюзионной хроматографии полимеров предъявляются наиболее жесткие требования к стабильности потока подвижной фазы. Поэтому нужно использовать насосные системы с точностью подачи не хуже 0,3–0,5%. В лучших насосах, разработанных специально для данного метода, нестабильность скорости потока снижена до 0,1%.
Между дозатором и колонками весьма желательно устанавливать фильтр с минимальным мертвым объемом, так как забивание входного фильтра колонки при анализе полимеров происходит гораздо чаще, чем в других видах ВЭЖХ.
Точность результатов в экоклюзионной хроматографии полимеров заметно зависит от температуры. При ее изменении на 10 °С ошибка определения средних молекулярных масс превышает ±10% [23]. Поэтому в данном варианте ВЭЖХ термостатирование разделительной системы обязательно.
Дозатор и колонки обычно размещают в одном термостате. Как правило, достаточна точность поддержания температуры ±1 °С в пределах до 80–100 °С. В некоторых случаях, например, при анализе полиэтилена и полипропилена, рабочая температура составляет 135–150 °С. Необходимо также принимать меры для предотвращения заметных изменений температуры в линии, соединяющей колонку с детектором. При рабочих температурах до 40–50 °С и длине линии 5–8 см ее целесообразно изготавливать из фторопластового капилляра с наружным диаметром около 1,5 мм, внутренним – 0,3 мм. При более высоких температурах требуется термостатирование капилляра.
Наиболее распространенным детектором в эксклюзионной хроматографии полимеров является дифференциальный рефрактометр. При работе с этим детектором следует помнить, что в диапазоне примерно до 5⋅103 –5⋅104 его сигнал зависит от молекулярной массы полимера. Поэтому при исследовании полимеров, содержащих значительное количество низкомолекулярных фракций, в процессе обработки результатов нужно вводить соответствующие поправки или, если это возможно, проводить специальную калибровку детектора. Из детекторов, разработанных специально для анализа полимеров, следует упомянуть вискозиметрический детектор и проточный лазерный нефелометр (детектор малоуглового лазерного светорассеяния). Эти детекторы в комбинации с рефрактометром или другим концентрационным детектором позволяют непрерывно определять молекулярную массу полимера в элюенте. При их использовании отпадает необходимость калибровки разделительной системы по исследуемому полимеру, но обработка информации может осуществляться только на ЭВМ. Вискозиметрический детектор, кроме того, является очень удобным прибором для исследования длинноцепной разветвленности синтетических полимеров.
Обычные электронные интеграторы, используемые в ВЭЖХ индивидуальных соединений, непригодны для обработки данных, получаемых при эксклюзионной хроматографии полимеров. Для этой цели используют мини-компьютеры, которые выполняют по специальным программам необходимые вычисления и выдают результаты опреде-
ления в виде средних молекулярных характеристик или кривых ММР. Современные приборы могут быть оснащены дополнительными устройствами для полной автоматизации анализа. Применение автоматических дозаторов в сочетании с мини-компьютером позволяет выполнять различные калибровки, выдавать в требуемой форме данные по ММР, проводить их статистический анализ без участия операторов.
Как отмечалось выше, в настоящее время анализ полимеров проводят в основном на обычной хроматографической аппаратуре. Однако существуют и специальные приборы, предназначенные преимущественно для определения ММР полимеров. К ним относится, в частности, микрогельхроматограф ХЖ-1309. Технические характеристики хроматографа приведены в приложении 14.6. Этот уникальный прибор оснащен высокочувствительным лазерным рефрактометром с вместимостью кюветы 0,1 мкл [24] и микроколонками диаметром 0,5 мм с эффективностью около 30 тыс. т. т./м. Продолжительность анализа составляет 5–10 мин, а расход растворителя – приблизительно 100 мкл на один анализ, что позволяет работать с особо дефицитными и сверхочищенными растворителями. Калибровку прибора и обработку результатов проводят на ЭВМ с пакетом программ, обеспечивающих выполнение любых расчетов, необходимых в эксклюзионной хроматографии полимеров.
Выбор сорбента
Выбор сорбентов, обеспечивающих оптимальные условия для решения конкретной аналитической задачи, проводят в несколько этапов. Первоначально на основе данных о химическом составе или растворимости анализируемых веществ устанавливают, какой вариант процесса следует применить – хроматографию в водных системах или в органических растворителях, что в значительной степени определяет тип необходимого сорбента. Разделение веществ низкой и средней полярности в органических растворителях можно успешно осуществить как на полужестких, так и на жестких гелях. Исследование ММР гидрофобных полимеров, содержащих полярные группы, чаще проводят на колонках со стирол-дивинилбензольными гелями, так как в этом случае практически не проявляются адсорбционные эффекты и не требуется добавка модификаторов к подвижной фазе, что значительно упрощает подготовку и регенерацию растворителя.
Для работы в водных системах используют главным образом жесткие сорбенты; иногда очень хорошие результаты удается получить на полужестких гелях специальных типов. Затем по калибровочным кривым или данным о диапазоне фракционирования, приведенным в гл. 4, выбирают сорбент нужной пористости с учетом имеющихся сведений о молекулярной массе образца. Если анализируемая смесь содержит вещества, отличающиеся по молекулярной массе не более чем на 2–2,5 порядка, то обычно удается разделить их на колонках с одним размером пор. При более широком диапазоне масс следует использовать наборы из нескольких колонок с сорбентами различной пористости. Ориентировочно калибровочную зависимость в этом случае получают сложением кривых для отдельных сорбентов.
На выбранных таким образом колонках выполняют пробный анализ и при необходимости вносят изменения в систему колонок для оптимизации разделения. Оптимизацию приходится проводить, если колонки не обеспечивают требуемого диапазона разделения или эффективности разделения.
Наиболее сложным является выбор системы колонок для разделения синтетических полимеров, имеющих широкое ММР. Обычно для этой цели применяли наборы из трех – пяти колонок, содержащих сорбенты с последовательно возрастающим размером пор
(например, µ-стирогель 102+103+104+105⊕)*, области разделения которых перекрываются. При этом, как правило, получали калибровочную зависимость с линейным диапазоном около трех порядков и с достаточно большими криволинейными участками, а продолжительность анализа (при наиболее типичной скорости потока 1 мл/мин) составляла 40–45 мин. Главным недостатком данной калибровки является существенное ухудшение селективности разделения на криволинейных участках, что заметно снижает точность результатов. Кроме того, резко усложняется обработка экспериментальных дан-ных. Поэтому особое значение имеет выбор такой разделительной системы, которая характеризуется линейной зависимостью логарифма молекулярной массы полимера от удерживаемого объема. В этом случае можно рассматривать хроматограмму как зеркальное отображение дифференциальной кривой ММР в логарифмическом масштабе.
Предложен принцип бимодального распределения размеров пор, который позволяет составлять наборы колонок с значительно лучшими рабочими характеристиками. В соответствии с этим принципом, для составления набора колонок с линейной калибровочной зависимостью в широком интервале молекулярных масс нужно использовать только два сорбента с размерами пор, отличающихся на один-полтора порядка и имеющих умеренно узкое распределение пор по размеру. Разделительная емкость С2 колонок с этими сорбентами должна быть примерно одинаковой. Полученные бимодальные наборы колонок, как правило, имеют линейный участок калибровочной кривой, перекрывающий около четырех порядков изменения молекулярной массы, и умеренную разрешающую способность. За счет сокращения числа колонок соответственно уменьшается продолжительность разделения. Так, бимодальные наборы, выпускаемые фирмой «Дюпон» и состоящие из колонок с зорбаксами PSM-60 и PSM-1000 длиной по 25 см, имеют линейную калибровку в диапазоне молекулярных масс от 2–102 до 106 и гарантированную эффективность не менее 20 000 т. т.
Дальнейшие исследования показали, что необходимое распределение пор сорбента по размерам, обеспечивающее линейную калибровку в любом заданном диапазоне молекулярных масс, в общем случае является мультимодальным и может быть рассчитано на ЭВМ.
Таким образом, имея несколько сорбентов разной пористости с известным распределением пор по размеру, можно рассчитать состав смешанного «линейного» сорбента.
Так, калибровочная зависимость тримодального сорбента на основе макропористых стекол в диапазоне молекулярных масс от 2–103 до 4–105 имела значительно более высокую степень линейности, чем у бимодальных наборов, описанных в работе.
Линейные наборы можно составлять и из колонок с полужесткими гелями. Приведем пример составления линейного набора из колонок с стирогелями в том случае, когда разделительная емкость первой колонки заметно меньше, чем второй. Полученная калибровочная зависимость представляет собой ломаную линию с точкой излома, соответствующей молекулярной массе около 20 000 (верхний предел селективного диапазона первой колонки). При подключении еще одной колонки с размером пор 500 Д разделительная емкость в диапазоне масс до 20 000 увеличилась примерно вдвое, а калибровочная зависимость набора стала практически линейной в диапазоне молекулярных масс от 5–102 до 2–106 .
По мнению Йоу с сотр., колонки с жесткими гелями лучше подходят для сочетания в бимодальные наборы, так как свойства этих сорбентов более стабильны от партии к партии. Однако следует отметить, что в последние годы качество колонок с полужесткими гелями и воспроизводимость их характеристик значительно улучшились. Отмечено, что современные полимерные сорбенты более однородны по размерам пор, чем сорбенты на основе силикагелей [28]. Опыт работы одного из авторов с колонками типа ц-сферогель показал, что соединение различных колонок требуемой пористости, взятых «через одну» (например, 5–102 +104 0 или 103 +105 0), в большинстве случаев позволяет получить линейную калибровочную зависимость в диапазоне около 4 порядков.
Оптимизацию разделительной системы целесообразно рассмотреть на примере исследования образца, о котором не известно ничего, кроме растворимости (в воде или в органическом растворителе). Предварительное разделение образца проводят на бимодальном наборе колонок с широким диапазоном разделения. В зависимости от вида получаемой хроматограммы (рис. 3) изменяют разделительную систему в соответствии с рекомендациями, приведенными ниже.
1. Набор оптимален.
2. Недостаточный диапазон разделения: имеются высокомолекулярные фракции, попадающие в область эксклюзии. Необходимо добавить колонку с более крупными порами.
3. Имеются фракции, попадающие в область эксклюзии; колонка II не участвует в разделении. Необходимо заменить ее на колонку с более крупными порами, чем у колонки I.