Реферат: Экспертные системы – основа технологии информатизации врачебной деятельности
В создании экспертных систем участвуют, как правило, врач-эксперт, математик и программист. Основная роль в разработке такой системы принадлежит эксперту-врачу.
У полностью оформленной экспертной системы присутствуют 4 основных компонента (блока):
· База знаний
· Машина вывода
· Модуль извлечения знаний
· Система объяснения принятых решений
Кроме того, хорошая экспертная система имеет блок для пополнения базы знаний – система с обучением.
Экспертные системы позволяют не только производить раннюю доклиническую диагностику, но также оценивать сопротивляемость организма и его предрасположенность к заболеваниям, в том числе онкологическим.
3. Самообучающиеся интеллектуальные системы
Среди экспертных медицинских систем особое место занимают так называемые самообучающиеся интеллектуальные системы (СИС). Они основаны на методах автоматической классификации ситуаций из реальной практики или на методах обучения на примерах. Наиболее яркий пример СИС — искусственные нейронные сети.
Искусственные нейронные сети (ИНС; artificial neural networks) представляют собой нелинейную систему, позволяющую классифицировать данные гораздо лучше, чем обычно используемые линейные методы. В приложении к медицинской диагностике ИНС дают возможность значительно повысить специфичность метода, не снижая его чувствительность.
ИНС — это структура для обработки когнитивной информации, основанная на моделировании функций мозга. Основу каждой ИНС составляют относительно простые, в большинстве случаев однотипные элементы (ячейки), имитирующие работу нейронов мозга. Каждый нейрон характеризуется своим текущим состоянием по аналогии с нервными клетками головного мозга, которые могут быть возбуждены или заторможены. Искусственный нейрон обладает группой синапсов — однонаправленных входных связей, соединенных с выходами других нейронов, а также имеет аксон — выходную связь данного нейрона, с которой сигнал (возбуждения или торможения) поступает на синапсы следующих нейронов.
Для ИНС характерен принцип параллельной обработки сигналов, что достигается путем объединения большого числа нейронов в так называемые слои и соединения нейронов различных слоев. Теоретически количество слоев и количество нейронов в каждом слое может быть произвольным, однако фактически оно ограничено ресурсами компьютера. В общем случае, чем сложнее ИНС, тем масштабнее задачи, подвластные ей. Прочность синаптических связей модифицируется в процессе извлечения знаний из обучающего набора данных (режим обучения), а затем используется при получении результата на новых данных (режим исполнения).
Наиболее важным отличием ИНС от остальных методов прогнозирования является возможность конструирования экспертных систем самим врачом-специалистом, который может передать нейронной сети свой индивидуальный опыт и опыт своих коллег или обучать сеть на реальных данных, полученных путем наблюдений. Нейронные сети способны принимать решения, основываясь на выявляемых ими скрытых закономерностях в многомерных данных. Положительное отличительное свойство ИНС состоит в том, что они не программируются, т.е. не используют никаких правил вывода для постановки диагноза, а обучаются делать это на примерах. В ряде случаев ИНС могут демонстрировать удивительные свойства, присущие мозгу человека, в том числе отыскивать закономерности в запутанных данных. Нейронные сети нашли применение во многих областях техники, где они используются для решения многочисленных прикладных задач: в космонавтике, автомобилестроении, банковском и военном деле, страховании, робототехнике, при передаче данных и др. Другое, не менее важное, свойство нейронной сети состоит в способности к обучению и обобщению полученных знаний. Сеть обладает чертами так называемого искусственного интеллекта. Натренированная на ограниченном множестве обучающих выборок, она обобщает накопленную информацию и вырабатывает ожидаемую реакцию применительно к данным, не обрабатывавшимся в процессе обучения.
Схематично процесс применения обученной ИНС в медицине показан на рис. 2
Рис. 1. Схема применения обученной искусственной нейронной сети в медицине
Несмотря на значительное количество уже известных практических приложений искусственных нейронных сетей, возможности их дальнейшего использования для обработки сигналов окончательно не исчерпаны, и можно предположить, что ИНС еще в течение многих лет будут одним из основных инструментов поддержки принятия решений в условиях отсутствия точных моделей реальных процессов и явлений.
Примером другой перспективной технологии обработки и обобщения больших объемов информации для решения задач классификации и прогнозирования является так называемая технология анализа и добычи данных Data Mining. Методы и инструментальные средства анализа и добычи данных представляют собой дальнейшее развитие таких известных статистических инструментов разведочного анализа, как метод главных и метод независимых компонент, факторный анализ, множественная регрессия, редуцирование пространства признаков с использованием метода многомерного шкалирования, кластерного анализа и распознавания образов и др. Программно реализованные и снабженные удобным пользовательским интерфейсом, а также поддержанные гибкими алгоритмами визуализации многомерных данных, средства Data Mining позволяют проводить соответствующие исследования даже начинающему пользователю. В арсенал методов кластерного анализа и распознавания образов систем Data Mining обычно входят метод опорных векторов (Support Vector Machine, или SVM), метод деревьев решений (decision trees), метод «ближайшего соседа» в пространстве признаков, байесовская классификация и др.
Среди указанной группы методов классификации и распознавания наиболее интересным и гибким представляется метод опорных векторов (МОВ).
Метод опорных векторов (МОВ) – это метод первоначальной классификации, который решает данную задачу путем построения гиперплоскостей в многомерном пространстве, разделяющих группы наблюдений, принадлежащих к разным классам. На рис. 3 проиллюстрирована основная идея МОВ. В левой части схемы представлены исходные объекты, которые далее преобразуются (перемещаются, сдвигаются) в пространстве признаков при помощи специального класса математических функций, называемых ядрами. Этот процесс перемещения называют еще преобразованием, или перегруппировкой объектов. Новый набор преобразованных объектов (в правой части схемы) уже линейно разделим. Таким образом, вместо построения сложной кривой (как показано в левой части схемы) требуется лишь провести оптимальную прямую, которая разделит объекты разных типов. Затем метод отыскивает объекты, находящиеся на границах между двумя классами, которые называются опорными векторами, и использует их для принятия решений о принадлежности к тому или иному классу новых объектов, предъявляемых для распознавания.
Рис. 3. Основная идея метода опорных векторов
4. Примеры использования экспертных систем в медицине
Примеры использования экспертных систем в медицине нельзя назвать единичными, они применяются во многих областях здравоохранения. Примечательно, что подавляющее большинство таких работ выполнено зарубежными исследователями и в основном они касаются возможностей использования ИНС в различных клинических ситуациях. Так, например, в области хирургии P.L. Liew et al. на основе ИНС создали систему прогнозирования риска развития желчнокаменной болезни у людей с избыточной массой тела. Авторы ретроспективно изучили антропоморфометрические, анамнестические, клинические и лабораторные данные 117 пациентов с ожирением, прооперированных за период с февраля 1999 по октябрь 2005 г. Была построена ИНС, обученная алгоритмом обратного распространения. Использовались 30 входных переменных, включая клинические данные (пол, возраст, индекс массы тела, сопутствующие заболевания), лабораторные показатели и результаты гистологического исследования. Прогнозирующую ценность ИНС сравнивали с моделью логистической регрессии, обученной на той же базе данных. ИНС продемонстрировала лучшую прогнозирующую ценность и более низкую ошибку, чем модель логистической регрессии. Наиболее важные факторы риска желчнокаменной болезни, по данным обеих методик, — повышенное диастолическое артериальное давление, преморбидный фон, нарушение метаболизма глюкозы и повышение уровня холестерина крови.
В эндоскопии A. Das et al. использовали нейросетевые технологии для сортировки больных с неварикозными кровотечениями из верхних отделов желудочно-кишечного тракта. Была исследована эффективность ИНС, обученной по клиническим и лабораторным данным 387 пациентов с изучаемой патологией, верификация — по данным 200 пациентов с проведением ROC-анализа. На выходе сети имелись две результирующие переменные: наличие или отсутствие признаков продолжающегося кровотечения и потребность в лечебной эндоскопии. Чувствительность нейронной сети составила > 80 %, прогнозирующая ценность – 92—96 %.
В онкоурологии P. Bassi et al. прогнозировали 5-летнюю выживаемость пациентов, перенесших радикальную цист-эктомию по поводу рака мочевого пузыря. Для этого были разработаны и сравнены ИНС и модель логистической регрессии (МЛР). Выявлено, что единственными статистически достоверными предсказателями 5-летней выживаемости оказались стадия опухоли и наличие или отсутствие прорастания в соседние органы. Положительная прогнозирующая ценность МЛР — 78,6%, ИНС – 76,2%, отрицательная прогнозирующая ценность – 73,9% и 76,5% соответственно. Индекс диагностической точности МЛР – 75,9%, ИНС – 76,4%. Таким образом, прогностическая ценность ИНС оказалась сопоставимой с МЛР, но нейросеть продемонстрировала определенные преимущества: ИНС базируется на удобном в работе, понятном программном обеспечении, позволяющем выявлять нелинейные связи между переменными, поэтому она более предпочтительна для использования в прогнозировании.
С. Stephan et al. применили ИНС для автоматизированного анализа биоптата предстательной железы. Методика основывалась на выявлении общего простат-специфического антигена (ПСА) и определении процента свободного ПСА. Чувствительность составила 95%, специфичность – 34%. При дополнении нейросети моделью логистической регрессии специфичность возросла до 95%.
F. K. Chunetal. использовали ИНС для выявления группы риска рака предстательной железы в сравнении с МЛР. ИНС также продемонстрировала более точные прогностические возможности.
В трансплантологии G. Santori et al. применили нейросетевые технологии в прогнозировании отсроченного снижения креатинина сыворотки крови у детей после трансплантации почки. Для выявления корреляции между входными переменными и искомым результатом у пациентов, подлежащих трансплантации почки, была создана искусственная нейронная сеть, обученная на 107 клинических примерах. Были отобраны наиболее важные переменные, коррелирующие с результатом: креатинин сыворотки крови в день пересадки, диурез за первые 24 часа, эффективность гемодиализа, пол реципиента, пол донора, масса тела в первый день после пересадки, возраст. Модель была откалибрована второй выборкой пациентов (n = 41). Точность нейронной сети в обучающей, калибровочной и проверочной выборках составила 89 %; 77% и 87% соответственно. Сравнительный логистический анализ показал общую точность 79%. Чувствительность и специфичность ИНС составили 87%, тогда как метод логистической регрессии продемонстрировал худшие результаты — 37% и 94% соответственно.
В медицинской радиологии F. Dоhler et al. использовали нейронную сеть для классификации изображений МРТ с целью автоматизированного обнаружения гиппокампального склероза. ИНС была обучена на 144 примерах изображений и позволяла классифицировать изменения в ткани головного мозга относительно наличия склеротических изменений. E.E. Gassman et al. создали ИНС для автоматизированной идентификации костных структур и оценили надежность этой методики по сравнению с традиционными. Кроме того, сегментацию структур кости ИНС выполнила в 10 раз быстрее.