Реферат: Экстремальные состояния организма
2) Рефрактерность гипоксемии по отношению к мероприятиям интенсивной терапии, направленной на улучшение диффузии кислорода и микроциркуляции в легких, объясняется особенностью зависимости Рао2 от РИ и АМП при развернутой клинической картине РДСВ. Последняя заключается в том, что даже существенному уменьшению РИ и АМП неизбежно сопутствует небольшой рост Рао. Так, уменьшению РИ и АМП на 10% от их фактического значения сопутствует увеличение Рао2 только на 2–4% при РДСВ 3–4-й стадии. В тоже время уменьшение РИ и АМП на те же 10% в начальных стадиях посттравматической ОДН сопровождается увеличением Рао2 на 14–15%.
3) Гиповентиляция непосредственно не связана со скачкообразным качественным изменением свойств системы внешнего дыхания. Постоянство линейной зависимости Рао2 от динамики МАВ обусловливает значимость вентиляционных нарушений в дальнейшем усугублении дыхательных расстройств на фоне уже произошедшей катастрофы – 3–4-й стадии РДСВ.
При всей важности решения самостоятельной задачи скорейшего устранения критического состояния путем интенсификации процессов срочной компенсации сводить цели оптимизированной интенсивной терапии дыхательной недостаточности после тяжелых травм только к профилактике жизнеугрожающих расстройств неправомерно.
Кибернетическим аналогом второго закона термодинамики, из которого следует, в частности, что термодинамическая оптимизация любой функции организма и любого процесса в нем зависит от соотношения энтропийных и неэнтропийных тенденций, является принцип необходимого многообразия У.Р. Эшби. Согласно этому принципу, для того чтобы система реализовала заданный тип поведения вне зависимости от внешних помех, необходимо подавить нежелательное многообразие в ее поведении, увеличив множество управлений. Таким образом, многообразие может быть разрушено только многообразием.
Исходя из этого, интенсивную терапию посттравматической ОДН следует рассматривать как средство улучшения управляемости системой газообмена. Для достижения этой цели необходимо, во-первых, устранить нарушения регуляторной функции центральной нервной системы (на данном этапе она является важным фактором саморегуляции), во-вторых придать контурам обратной связи между подотделами системы дыхания надлежащие знаки, для того чтобы не происходило усугубления неупорядоченности, дезадаптации по принципу положительной обратной связи. В реализации этого положения особая роль принадлежит устранению потока ноцицептивной патологической импульсации посредством адекватного обезболивания, которое не вызывает излишнюю центральную депрессию, а наоборот предотвращает развитие дезадаптивного патогенного нейронального компонента боли – страдания.
С учетом направления потока энергообеспечения (легкие–кровь–ткани) правомерно считать, что системе дыхания присуще основное свойство любой иерархической системы: несмотря на расстройства в локальных пунктах (неизбежность нарушений наиболее уязвимого атмосферно-легочного газообмена при тяжелой травме), система в целом может функционировать нормально за счет ограничения неблагоприятных воздействий одной части системы на другую. Иначе говоря, углубление "потенциальной ямы" общеорганизменного функционального аттрактора ослабляет проявление неизбежных возмущений, возникающих в отдельных функциональных алгоритмах. Отсюда следует обязательность проведения лечебных мероприятий, направленных на улучшение транспорта газов кровью, тканевого дыхания для обеспечения структурной связанности сложной иерархической управляемой системы газообмена в экстремальных условиях острого энергетического кризиса, присущего травматической болезни.
Таким образом, привлечение теории диссипативных систем и синергетики к решению клинической проблемы экстремального состояния имеет не только общенаучный, но и прямой практический смысл. Оно объясняет участие в реализации экстремального состояния одного из главных системообразующих факторов живого организма – хронобиологической согласованности и сопряженности процессов базисного метаболизма. Понимание данного обстоятельства способствует формированию методологии диагностического и лечебного подходов, ориентированной не на разработку новых частных методов интенсивной терапии, решающих конкретные задачи (это направление совершенствования в лечении критических состояний сохраняется в полной мере, но не оно составляет предмет данного обсуждения), а на раннее включение саморегуляции организма как основополагающего условия устойчивой, долговременной адаптации.
Распознавание и устранение острой недостаточности внешнего дыхания в постшоковом периоде остается ключевой и нерешённой пока еще задачей в лечении последействий экстремального состояния организма. Сопряженность нарушений внешнего дыхания с расстройствами базисного метаболизма, а через них – с главными системообразующими факторами просматривается здесь особенно отчетливо. Внедрение новых управляемых программ и самых современных методов искусственной вентиляции легких не способно самостоятельно решить эту проблему. Решение должно быть связано с восстановлением механизмов сопряженной саморегуляции двух главных системообразующих факторов: согласованности базисного метаболизма с его единой индивидуально детерминированной хронобиологической программой, с одной стороны, и доминирующей роли кислорода в окислительно-восстановительном потенциале организма – с другой. При этом нарушения на любом из этапов кислородного обмена неизбежно приобретают общесистемную значимость и реализуются в функциональных расстройствах на всех уровнях жизнеобеспечения.
Гипоксия, неизбежно проявляющаяся при интенсивном продолжительном функциональном напряжении, обусловливает постепенное включение анаэробного гликолиза в качестве временного альтернативного источника энергообеспечения. До тех пор пока анаэробный гликолиз выполняет вспомогательную роль и способен легко уступить место окислительному фосфорилированию, если восстанавливается снабжение кислородом, он решает полезную задачу. Но как только энергообеспечение радикально перестраивается на анаэробный путь, это влечет за собой бесконтрольное возрастание свободно-радикального окисления липидов. и дальнейшее развитие событий приобретает фатальную динамику. Своеобразный переходный период, когда в организме сосуществуют и аэробный, и анаэробный пути энергопродукции и значимость обоих путей относительно уравнивается, иногда характеризуется как "промежуточный метаболизм". В отличие от используемого нами понятия "базисный метаболизм" в данном случае обозначение "промежуточный метаболизм" соотносится со значительно более ограниченной сферой представлений из области обмена веществ организма. Оно отражает неустойчивое равновесие аэробного и анаэробного путей энергетического обмена в критической ситуации перед полной необратимой и фатальной переориентацией на анаэробный путь. Такая ситуация в энергетическом метаболизме соответствует экстремальному (крайнему, пограничному) состоянию организма, клинически проявляющемуся в так называемой полиорганной недостаточности (ПОН). Вместе с тем полиорганная недостаточность (а точнее – полиорганная несостоятельность) рассматривается нами как клиническая манифестация неупорядоченности диссипативных процессов на уровне базисного метаболизма, являющаяся ближайшим последствием запредельного функционального напряжения. И хотя несостоятельность функциональной системы внешнего дыхания проявляется на данном этапе наиболее часто, в целом клиническая картина ПОН характеризуется выраженной пестротой, что обусловлено индивидуальными различиями, зависящими от изначальной, так сказать, фоновой функциональной ущербности организма, его locusminorisresistentio. Это и создает значительное разнообразие вариантов сочетания ранних постэкстремальных осложнений и последовательности их развития.
В более поздние сроки, к концу первой недели после тяжелой сочетанной травмы, преобладающими становятся универсальные последствия неупорядоченности базисного метаболизма, реализующиеся в рефракторной иммунодепрессии и приводящие к развитию тяжелых, в том числе и генерализованных, форм раневой инфекции. В развивающейся ситуации главная, определяющая роль принадлежит глубинным нарушениям жизнедеятельности организма. Эти нарушения полностью соответствуют тяжелому инфекционно-воспалительному процессу, хотя констатировать последний правомерно лишь при условии подключения другого необходимого фактора инфекции – микробиологического. Особая теоретическая и практическая важность данного этапа обусловили выделение его обсуждения в отдельную главу, где будут рассмотрены теоретические и практические аспекты системной воспалительной реакции организма на тяжелую сочетанную травму и посттравматического сепсиса.
Наконец, в случае благоприятного непосредственного исхода наступает этап позднего последействия экстремального состояния, когда стойкие неустраненные нарушения базисного метаболизма могут сказаться на развитии или особо тяжелом, генерализованном течении тех или иных системных эндогенных заболеваний. Есть основания полагать, что и на данном этапе различие нозологических форм развивающихся заболеваний во многом зависит от изначальной функциональной ущербности конкретного организма, на которую как бы "наслаиваются" нарушения алгоритмов базисного метаболизма, обусловленные перенесенным экстремальным состоянием. Правда, как уже неоднократно отмечалось ранее, все. что касается отдаленного последействия перенесенного экстремального состояния, пока еще с трудом поддается верификации, поскольку основывается на отдельных наблюдениях, а не на достаточно репрезентативных обобщающих материалах.
Наиболее важное заключение, вытекающее из применения положений синергетики к решению клинической проблемы экстремального состояния, связано с перспективой математического описания клинического "образа" пациента в постшоковом периоде с помощью компьютерной техники. Это означает, что обретается возможность достоверного раннего прогнозирования возможной динамики травматической болезни и упреждающего ее лечение у конкретных пациентов.
Вернемся к изначальной, упрощенной, схеме аттрактора. Представив, что она отображает пространственную модель аттрактора эффективной или, иначе говоря, условно нормальной стресс-реакции организма на чрезвычайное воздействие, целенаправленно выберем несколько (не более 6–8) функциональных алгоритмов, которые оцениваются как наиболее репрезентативные для образного восприятия функционального состояния исследуемого организма, переживающего чрезвычайную ситуацию. Затем осуществим плоскостной поперечный срез аттрактора, своеобразную "интегральную томографию", позволяющую репродуцировать представление о пространственном образе аттрактора. Получается плоскостное изображение ("профиль"). Его допустимо соотнести с условно нормальной стрессорной реакцией. Если теперь осуществить аналогичный плоскостной срез пространственной схемы у другого пациента, у которого насупил срыв функциональной интеграции, обусловивший формирование "странного" аттрактора вследствие отклонения траекторий отдельных функциональных алгоритмов в точках бифуркаций, то полученный "профиль" может быть сопоставлен с первым. На основании установленных различий открывается возможность кластерного анализа уже не физиологических, а патологических профилей с выделением их типовых вариантов, которые при использовании специально разработанного математического аппарата могут быть достоверно соотнесены с особенностями клинического течения в целях определения прогноза. При этом создаются условия для упреждающего лечения тяжелых осложнений на основе коррекции функционального состояния пациента путем "диалога" с его организмом, за которым признается способность к саморегуляции. Разработке системы функционального мониторинга, основанного на изложенных принципах, посвящена следующая глава.
Заключение
Теория термодинамики диссипативных систем и фундаментальные принципы синергетики могут быть использованы в целях углубленного и более полного представления о сущности механизмов энергообеспечения при экстремальном состоянии организма. Для этого необходимо рассматривать организм как сложную открытую неравновесную систему, адаптация которой к изменениям условий существования достигается путем саморегуляции. Организующим фактором саморегуляции при внезапном и резком изменении условий существования становится функциональная доминанта. Она императивно способствует продвижению множества сопряженных внутренних процессов (изначально складывающихся на уровне межмолекулярного взаимодействия) с единой целью – устранить жизненную угрозу. Именно функциональная доминанта обеспечивает приоритетное избирательное энергообеспечение этих процессов. Таким образом, формируется функциональный аттрактор.
В случае крайнего, экстремального состояния переориентация энергетического потенциала осуществляется с неизбежным "обкрадыванием" ряда важных процессов жизнеобеспечения, имеющих отношение к системообразующим факторам, то есть к существованию организма в качестве сложной, глубокоинтегрированной, компактной биосистемы. Имеются в виду те глубинные процессы, которые, не будучи непосредственно причастными к реакциям срочной адаптации, совершенно необходимы для устойчивой стабилизации жизнедеятельности после устранения экстремальной ситуации. Следствием энергетического "обкрадывания" этих процессов становится их дезинтеграция с последующим нарушением детерминированных алгоритмов. В основе дезинтеграции лежит отклонение пространственных траекторий отдельных процессов в точках их бифуркации. Создаются условия для формирования "странного" аттрактора. Он отражает уже не эффективную стресс-реакцию, а патологическую ситуацию. Характер и перспективы развития этой ситуации неоднозначны и зависят от индивидуальных различий цитокиновой сети базисного метаболизма.
Изложенная интерпретация развития событий позволяет подойти к пониманию термодинамической основы экстремального состояния и его последействия. Но главное – она открывает принципиальную возможность создания системы функционального компьютерного мониторинга, учитывающей индивидуальные и типовые факторы, влияющие на динамический прогноз травматической болезни.
Литература
1. "Неотложная медицинская помощь", под ред. Дж.Э. Тинтиналли, Р. Кроума, Э. Руиза, Перевод с английского д-ра мед. наук В.И. Кандрора,М.В. Неверовой, А.В. Сучкова,А.В. Низового, Ю.Л. Амченкова; под ред. В.Т. Ивашкина, П.Г. Брюсова; Москва "Медицина" 2001
2. Елисеев О.М. Справочник по оказанию скорой и неотложной помощи, "Лейла", СПБ, 1996 год
3. Ерюхин И.А., Шляпников С.А. Экстремальное состояние организма. Элементы теории и практические проблемы на клинической модели тяжелой сочетанной травмы. – СПб.: Эскулап, 1997.