Реферат: Электронные и микроэлектронные приборы

Çíà÷åíèå êîíöåíòðàöèè îêèñëèòåëÿ C0 çàâèñèò îò òåìïåðàòóðû, ñêîðîñòè ãàçîâîãî ïîòîêà è ðàñòâîðèìîñòè îêèñëèòåëÿ â SiO2 .

Äëÿ òîãî ÷òîáû îïðåäåëèòü ñêîðîñòü ðîñòà îêèñëà, ðàññìîòðèì ïîòîêè îêèñëèòåëÿ â îáúåìå îêèñëà (F2) è íà åãî ãðàíèöå ñ êðåìíèåì (F3).

Ñîãëàñíî çàêîíó Ôèêà, ïîòîê ÷åðåç îáúåì îêèñëà îïðåäåëÿåòñÿ ãðàäèåíòîì êîíöåíòðàöèè îêèñëèòåëÿ:

F2=-D(dC/dz)=D(C0-Ci)/z0, ( 1 )

ãäå Ci - êîíöåíòðàöèÿ îêèñëèòåëÿ â ìîëåêóëàõ íà êóáè÷åñêèé ñàíòèìåòð ïðè z = z0,

D - êîýôôèöèåíò äèôôóçèè ïðè äàííîé òåìïåðàòóðå,

z0 - òîëùèíà îêèñëà.

Âåëè÷èíà ïîòîêà (F3) íà ãðàíèöå îêèñëà ñ ïîëóïðîâîäíèêîì çàâèñèò îò ïîñòîÿííîé K ñêîðîñòè ïîâåðõíîñòíîé ðåàêöèè è îïðåäåëÿåòñÿ êàê:

F3=kCi ( 2 )

Ïðè ñòàöèîíàðíûõ óñëîâèÿõ ýòè ïîòîêè ðàâíû, òàê ÷òî F3 = F2 = F1 = F. Ñëåäîâàòåëüíî, ïðèðàâíÿâ ñîîòíîøåíèÿ ( 1 ) è ( 2 ), ìîæíî âûðàçèòü

âåëè÷èíû Ci è C0 ÷åðåç C*:

(3)

Для того чтобы определить скорость роста окисла, представим уравнение потока на границе SiO2 - Si в следующей форме:

(4)

Ñêîðîñòü ðîñòà îêèñëà îïðåäåëÿåòñÿ ïîòîêîì (F3) è êîëè÷åñòâîì ìîëåêóë îêèñëèòåëÿ (Ni), íåîáõîäèìûì äëÿ îáðàçîâàíèÿ îêèñëà â åäèíè÷íîì îáúåìå. Ïîñêîëüêó êîíöåíòðàöèÿ ìîëåêóë SiO2 â îêèñëå ðàâíà 2,2*1022 ñì-3, òî äëÿ ïîëó÷åíèÿ äâóîêèñè êðåìíèÿ òðåáóåòñÿ êîíöåíòðàöèÿ ìîëåêóë êèñëîðîäà ðàâíàÿ 2,2*1022 ñì-3 èëè êîíöåíòðàöèÿ ìîëåêóë âîäû 4,4*1022 ñì-3 .

Ñîîòíîøåíèå ìåæäó âåëè÷èíàìè z0 è t îïðåäåëÿåòñÿ èíòåãðàëîì

Ñëåäîâàòåëüíî, äëÿ ìàëûõ âðåìåí îêèñëåíèÿ òîëùèíà îêèñëà îïðåäåëÿåòñÿ ïîñòîÿííîé ñêîðîñòè ïîâåðõíîñòíîé ðåàêöèè K è ïðÿìîïðîïîðöèîíàëüíà âðåìåíè îêèñëåíèÿ (8). Äëÿ áîëüøèõ âðåìåí îêèñëåíèÿ ñêîðîñòü ðîñòà çàâèñèò îò ïîñòîÿííîé äèôôóçèè D (9), à òîëùèíà îêèñëà ïðîïîðöèîíàëüíà êîðíþ êâàäðàòíîìó èç âðåìåíè ïðîöåññà. Îòìåòèì, ÷òî íàèáîëåå ÷àñòî èñïîëüçóåòñÿ òîëùèíà îêèñëà, ñîñòàâëÿþùàÿ äåñÿòûå äîëè ìèêðîíà, à âåðõíèé ïðåäåë ïî òîëùèíå äëÿ îáû÷íîãî òåðìè÷åñêîãî îêèñëåíèÿ ñîñòàâëÿåò 1 - 2 ìêì. Çíà÷èòåëüíûì äîñòèæåíèåì ïîñëåäíåãî âðåìåíè ÿâèëîñü äîáàâëåíèå â îêèñëèòåëüíóþ ñðåäó â ïðîöåññå îêèñëåíèÿ õëîðñîäåðæàùèõ êîìïîíåíòîâ. Ýòî ïðèâåëî ê óëó÷øåíèþ ñòàáèëüíîñòè ïîðîãîâîãî íàïðÿæåíèÿ ïîëåâûõ ÌÄÏ - òðàíçèñòîðîâ, óâåëè÷åíèþ íàïðÿæåíèÿ ïðîáîÿ äèýëåêòðèêîâ è ïîâûøåíèþ ñêîðîñòè îêèñëåíèÿ êðåìíèÿ. Ãëàâíàÿ ðîëü õëîðà â ïëåíêàõ äâóîêèñè êðåìíèÿ (îáû÷íî ñ êîíöåíòðàöèåé õëîðà 1016 - 1020 ñì-3) çàêëþ÷àåòñÿ â ïðåâðàùåíèè ñëó÷àéíî ïðîíèêøèõ â SiO2 ïðèìåñíûõ èîíîâ, íàïðèìåð, íàòðèÿ èëè êàëèÿ â ýëåêòðè÷åñêè íåàêòèâíûå.

Плазмохимическое окисление кремния

Процессы плазменного окисления металлов и полупроводников заключается в формировании на их поверхности оксидных слоев при помещении в кислородную плазму образцов. Образцы могут быть изолированными (плазменное оксидирование) или находиться под положительным относительно плазмы потенциалом (плазменное анодирование).

На рисунке изображена принципиальная схема установки для осуществления процесса плазменного анодирования. Кислородная плазма возбуждается в объеме 1 генератора плазмы.

Существует несколько видов плазмы, отличающиеся способом возбуждения.

Тлеющий разряд на постоянном токе.

При этом в объеме 1 создается пониженное давление кислорода (обычно 0.1--1 Торр) и между электродами 2 и 3 прикладывается постоянное напряжение разряда Ud величиной внесколько сотен вольт.

Дуговой разряд низкого давления.

Катод 3 нагревается за счет пропускания через него тока накаливания. Вследствие чеготермоэмиссии электронов с поверхности катода облегчается ионизация газоразрядного промежутка, что приводит к снижению напряжения Ud до величины менее 100 В

ВЧ разряд (радиочастотный разряд).

Плазма возбуждается за счет поглощения ВЧ мощности генератора, связанного с объемом 1 либо индуктивно, либо емкостным способом ( ВЧ напряжение подается на пластины 2 и 3 ).

ÑÂ× ðàçðÿä (ìèêðîâîëíîâûé ðàçðÿä).

К-во Просмотров: 240
Бесплатно скачать Реферат: Электронные и микроэлектронные приборы