Реферат: Физические свойства минералов
Плотность минералов возрастает:
- с ростом компактности кристаллической структуры;
- с увеличением атомного номера слагающих его химических элементов;
- с уменьшением их ионных радиусов.
Минералы переменного химического состава имеют непостоянную плотность.
Минералы обладают и другими свойствами, такими как магнитность, люминесценция, ковкость, хрупкость, упругость, радиоактивность, растворимость и др.
Форма кристаллов
Облик кристаллов (форма) – это общий вид кристалла. Исходя из того, что любое тело в пространстве имеет три измерения, выделяют следующие основные типы форм кристаллов:
- изометричные – одинаково развитые во всех трех направлениях (ромбододекаэдры граната , октаэдры магнетита );
- вытянутые в одном направлении – призматические , столбчатые , шестоватые , игольчатые , волосовидные
- вытянутые в двух направлениях – таблитчатые , пластинчатые , листоватые и чешуйчатые .
Широко распространены и переходные между этими основными типами формы:
- боченковидные – промежуточная форма между 1 и 2 типом
- досковидные – уплощенные столбчатые кристаллы ( дистен )
Кроме того, существуют сложные формы кристаллов, например кристаллические дендриты.
Габитус кристаллов – более строгий термин, определяющий облик кристалла по доминирующим на нем граням и соотношению размеров кристалла в трех его измерениях.
- Пример : кристаллы пирита почти всегда изометричные по облику, но по преобладающим граням их габитус может быть разным – кубическим , пентагон-додекаэдрическим , октаэдрическим . Подробно габитус кристаллов изучается в курсе «Кристаллография».
Физические свойства минералов.
Физические свойства минералов имеют большое значение не только для их использования, но и для диагности (определения). Они зависят от химического состава и типа кристаллической структуры. Физические свойства могут представлять собой скалярную величину, т.е постоянны во всех направлениях кристаллической решетки, или быть векторными. К последним, могут у отдельных минералов и их агрегатов, относится твердость, спайность, оптические свойства.
Плотность .
Плотность минералов измеряется в граммах на см3 (г/см3 ) и в значениях, у разных минералов, колеблется от 1 (жидкие битумы) до 23 (осмистый иридий). Оснавная масса минералов имеет плотность от 2,5 до 3,5, что определяет среднюю плотность земной коры в 2,7 - 2,8 г/см3 .
Минералы по плотности условно можно разделить на три группы:
- Легкие, плотность до 3,0 г/см3
- Средние, от 3,0 до 4 г/см3
- Тяжелые, плотность более г/см3
Некоторые минералы легко узнаются по большой плотности (барит - 4,5, церрусит - 6,5). Минералы, содержащие тяжелые металлы, имеют большую плотность. Наибольшую плотность в мире минералов имеют самородные элементы - медь, серебро, золото, минералы группы платины.
В минералах одного и того же состава плотность определяется характером упаковки атомов в структурной ячейке кристалла. Наиболее яркие примеры: алмаз (3,5) и графит (2,2) - оба образованы из одного и того же вещества - углерода, но имеют различные кристаллические структуры. Другой пример: кальцит, имеет состав Ca[CO3 ], плотность 2,6 - 2,8 и арагонит, того же состава, но уже плотностью 2,9 - 3.0 г/см3 .
Для минералов, представляющих изоморфные ряды (структурное замещение атомов), увеличение или уменьшение плотности пропорционально изменению химического состава. Пример: в изоморфном ряду оливинов от форстерита Mg[SiO4 ] до фаялита Fe[SiO4 ] плотность увеличивается от 3,20 до 4, 35 г/см3 .
Удельные веса (плотность) минералов определяются в основном двумя способами:
- Методом вытеснения жидкости, т. е. путем взвешивания образца и измерения объема вытесненной им воды в сосуде. Так называемый весовой метод.
- Путем определения потери в весе минерала, погруженного в воду (абсолютный вес образца делят на потерю им веса в воде), т.е согласно закону Архимеда.
Методику исследования плотности этими методами опишем в отдельной статье.
Удельный вес мелких зернышек минерала определяется с помощью так называемого пикнометра или тяжелых жидкостей и весов Вестфаля, описываемых в специальных руководствах.
Существует еще несколько менее распространенных методов:
- Объемный метод. Основан на установлении объема минерала с помощью различных по конструкции объемомеров (волюмометров). Такой метод просто не заменим для определения плотности рыхлых, землистых минералов или легко растворимых минералов выделяемых в форме налетов.
- Иммерсионный метод. Базируется на подборе тяжелой жидкости с плотностью равной плотности минерала. Уравновешивания в жидкости. Т.е. в жидкости плотностью 2, 5 минералы меньшей плотности будут всплывать, а большей тонуть. Этот метод широко используется в горнодобывающей промышленности для обогащения руды.
Зная химический состав минерала можно математически вычислить его плотность по формуле:
где P - плотность в г/см3 ; AW - сумма атомных масс атомов в элементарной ячейке и V – объем элементарной ячейки в нм3 . Коэффициент 1,6602 х 10-24 (значение, обратное числу Авогадро) представляет собой единицу атомной массы, выраженную в граммах, а для перевода объема ячейки в см3 необходимо ее объем в нм3 умножить на 10-21 .
Для иллюстрации рассчитаем плотность галита; его ячейка содержит 4NaCl и представляет собой кубическую элементарную ячейку с а = 0,564 нм:
Такой расчет часто полезен для проверки результатов химического анализа минералов, с одной стороны, и результатов измерений плотности и размера элементарной ячейки – с другой.
Спайность.
Спайность – способность минерала раскалываться при ударе или другом механическом воздействии по определенным кристаллографическим плоскостям.
Спайность связана со структурой кристалла и характером атомных связей. Вдоль плоскостей спайности силы связи оказываются более слабыми, чем вдоль других направлений. Плоскости спайности всегда обладают высокой плотностью атомов и во всех случаях параллельны возможным граням кристалла. Так, спайность пироксенов и амфиболов также непосредственно связана с их структурой, которая содержит цепочки кремнекислородных тетраэдров. Как видно из рисунков (рис.11.31 и 11.41) спайность возникает по плоскостям между цепочками.
Спайность выявляют, прослеживая регулярные системы трещин в прозрачных минералах, таких как флюорит или кальцит, либо ровные отражающие плоскости, образующиеся при раскалывании кристаллов, что наблюдается у полевых шпатов, пироксенов и слюд. Следы плоскостей спайности играют важную роль определяющих направлений при оптическом изучении ксеноморфных зерен под микроскопом, не имеющих хорошо выраженных граней.
Степень совершенства проявления спайности исследуемого минерала определяется путем ее сопоставления с данными следующей 5-ступенчатой шкалы:
- Спайность весьма совершенная проявляется в способности кристалла расщепляться на тонкие пластинки. Получить излом иначе, чем по спайности в этих кристаллах чрезвычайно трудно (слюда, молибденит).
- Спайность совершенная проявляется при ударе молотком в виде выколов, представляющих собой уменьшенное подобие разбиваемого кристалла. Так, при разбивании галита получают мелкие правильные кубики, при дроблении кальцита – правильные ромбоэдры (топаз, хромдиопсид, флюорит, барит).
- Спайность средняя характеризуется тем, что на обломках кристаллов отчетливо наблюдаются как плоскости спайности, так и неровные изломы по случайным направлениям (полевые шпаты, пироксены).
- Спайность несовершенная обнаруживается с трудом при тщательном осмотре неровной поверхности скола минерала (апатит, касситерит).
- Весьма несовершенная, т.е. практически отсутствует.
При раскалывании минералов, лишенных спайности или обладающих плохой спайностью, возникают незакономерные поверхности излома, который по внешнему облику характеризуется как:
- раковистый (опал),
- неровный (пирит),
- ровный (вюртцит),
- занозистый (актинолит),
- крючковатый (самородное серебро),
- шероховатый (диопсид),
- землистый (лимонит).