Реферат: Формування, ріст і розвиток мітохондрій в гаметогенезі та ранньому ембріогенезі хребетних
2)Продукти мітохондріального білкового синтезу
Мітохондріальний геном тварин кодує синтез відносно невеликої кількості поліпептидів. В мітохондріальній ДНК клітин людини та тварин ідентифіковано 13 рамок зчитування для п’яти відомих і восьми ще не вивчених білків. В генах, що кодують синтез мітохондріальних білків у клітинах тварин інтрони не виявлені, на відміну від клітин вищих рослин та грибів [Andersonetal, 1981].
Цікавим є той факт, що кількість білків - продуктів мітохондріальної трансляції, виявлених за допомогою електрофорезу, значно перевищує кількість рамок зчитування, а отже і кількість потенціальних генів, ідентифікованих в Н-тяжі мітохондріальної ДНК. Це може пояснюватися тим, що серед білків, які синтезуються в мітохондрії, є такі, що кодуються L - тяжем мітохондріальної ДНК, хоча на ньому рамки зчитування ще не виявлені. Крім цього, можна припустити, що деякі з ідентифікованих рамок зчитування можуть кодувати синтез більш ніж одного білка.
На даний час серед мітохондріальних продуктів трансляції ідентифіковані три субодиниці ( І, ІІ і ІІІ ) цитохромоксидази, апоцитохром b і дві субодиниці АТФ-ази, причому гени, що кодують синтез обох субодиниць (6-ї та 8-ї) виявлені лише в геномі мітохондрій дріжджів, а в клітинах тварин однозначно виявлений лише ген 6-ї субодиниці. Детально вивчено функціональне значення цілого ряду білків, які синтезуються в мітохондріях. Існують дані, що деякі із синтезованих в мітохондріях поліпептидів можуть виходити з мітохондрій і грати певну роль в ядерно-мітохондріальних взаємовідношеннях, зокрема в регуляції експресії ядерних генів, що кодують синтез мітохондріальних білків [Bibbetal., 1981; цит. за: Минченко, 1987].
Доказом цитоплазматичного походження основної маси мітохондріальних білків є такі ознаки:
1) мітохондрії цитоплазматичних мутантів petite дріжджів мають дефективний дихальний ланцюг (відсутні цитохроми аа3 , В і С), в них редукована або повністю відсутня мітохондріальна ДНК, а також відсутня, очевидно, система синтезу білка. Отже, всі білки, присутні у таких дефектних мітохондріях, мають цитоплазматичне походження;
2) мітохондрії клітин, що ростуть у присутності інгібіторів мітохондріального білкового синтезу (хлорамфеніколу або еритроміцину), мають дефектну дихальну систему. При повному інгібуванні білкового синтезу в мітохондріях всі білки, що залишилися в органелі, мають цитоплазматичне походження. Природно, що мітохондрії клітин, які ростуть в присутності інгібіторів синтезу мітохондріальних білків, за своєю будовою та набором ферментів схожі на мітохондрії цитоплазматичних мутантів petite дріжджів [Озернюк, 1985].
Отже, значення мітохондріального білкового синтезу полягає в забезпеченні мітохондрій невеликою кількістю гідрофобних білків, які входять у склад ряду ферментних комплексів, локалізованих на внутрішній мембрані мітохондрій, а також у синтезі поліпептидів, які беруть участь в регуляції ядерно-цитоплазматичних взаємовідношеннях.
3)Синтез мітохондріальних білків у цитоплазмі.
Мітохондрії містять у зовнішніх та внутрішніх мембранах, міжмембранному просторі і матриксі кілька сотень білків, синтез яких протікає на матрицях, що кодуються ядерним геномом. Для багатьох мітохондріальних ферментів відомі функціонуючі в цитоплазмі аналоги, але цитоплазматичні та мітохондріальні форми цих білків кодуються різними генами. Синтез цих білків відбувається як на вільних, так і на зв’язаних із мембранами ендоплазматичного ретикулуму цитоплазматичних полісомах. [Сэджер, 1975]. На даний час детально вивчено синтез великої кількості мітохондріальних білків зовнішніх та внутрішніх мембран, міжмембранного простору та матриксу і їх транспорт в мітохондрії. Всі вивчені білки зовнішніх мембран мітохондрій синтезуються в цитоплазмі і в такому вигляді вбудовуються у мембрану, а всі інші білки (принаймні, частина з них) синтезуються у вигляді попередників з N-кінцевою лідерною послідовністю розміром від 1 до 6 тис. дальтон. Білки чи їх попередники, що поступають з цитоплазми, розпізнаються певними структурами (рецепторами), локалізованими на зовнішній мембрані мітохондрій. У білків-попередників в N-кінцевій лідерній послідовності міститься не лише інформація, необхідна для розпізнавання рецептором, а й інформація, що забезпечує подальший транспорт білка і окремі стадії його процесингу [Adoutte, 1983, Bensonetal., 1984; цит. за:Минченко, 1987].
4)Транспорт у мітохондрії білків, синтезованих у цитоплазмі.
Очевидно, існує не менш ніж три механізми транспорту білків та їх попередників у мітохондрії. Перший механізм характерний для білків зовнішніх мембран мітохондрій, які синтезуються на цитоплазматичних полісомах у вигляді зрілих форм. Ці білки мають сигнальні послідовності, за допомогою яких впізнаються певними структурами зовнішньої мембрани і вбудовуються в неї. Другий та третій механізми транспорту характерні для тих мітохондріальних білків, які синтезуються в цитоплазмі у вигляді попередників. Ці білки своїми розпізнавальними структурами взаємодіють з певними рецепторами на зовнішній мембрані і проникають крізь неї. Білки, що транспортуються за другим механізмом, проходять через внутрішню мембрану за рахунок процесу, який вимагає наявності електрохімічного градієнта на внутрішній мембрані; потім відбувається відщеплення лідерної послідовності. Транспорт таких білків не спряжений облігатно з процесингом, оскільки попередники білків ефективно накопичуються всередині мітохондрій (матриксі чи внутрішніх мембранах) навіть при сильному інгібуванні мітохондріальних протеїназ. За третім механізмом надходять білки з цитоплазми в міжмембранний простір. Ці білки транслокуються крізь зовнішню мембрану мітохондрій, а потім N-кінцева частина попередника білка проходить через внутрішню мембрану в матрикс, де за допомогою матриксних протеїназ відбувається відщеплення частини лідерної послідовності. Після цього утворена форма попередника повертається у міжмембранний простір, де зв’язується із зовнішньою поверхнею внутрішньої мембрани, і лише після цього відбувається завершальний процесинг під дією зв’язаної з внутрішньою мембраною протеїнази. Транспортовані в мітохондрії поліпептиди зазнають посттрансляційної модифікації. В мітохондріях виявлені протеїнкінази, які фосфорилюють білки зовнішньої та внутрішньої мембран мітохондрій [Минченко, Дударева, 1990].
5)Формування окремих компонентів мембран мітохондрій. Розмноження мітохондрій.
Збирання компонентів мітохондрій, що синтезуються у різних частинах клітини, є досить складним процесом, що регулюється як на рівні взаємної координації мітохондріального та цитоплазматичного білкового синтезу, так і на рівні властивостей самих компонентів. Вважають, що гідрофобні продукти синтезу білка в мітохондріях зв’язуються з ліпідами. Утворені протеоліпіди здатні до взаємної агрегації і формування більш крупних комплексів, які можуть бути “матрицями” для зв’язування білків, які синтезуються у цитоплазмі. Такий висновок для хребетних вперше був зроблений у роботах Дроза та Бержерона [Droz, Bergeron, 1965; цит. за: Озернюк, 1978].
При вивченні особливостей ультраструктури та властивостей внутрішньої мембрани мітохондрій було зроблено висновок, що в мітохондріях існують зони росту, в яких переважно і відбувається вбудовування нових компонентів. Зони росту, на думку Вернера та Нейперта, розташовані в ділянках, де внутрішня мембрана переходить у кристи. [Werner, Neupert, 1972; цит. за: Озернюк, 1978].
Наскільки складним є питання про механізм розмноження мітохондрій, свідчить той факт, що досі не зрозуміло, як відбувається процес збільшення кількості мітохондрій. На думку Озернюка [1978], мітохондрії розмножуються шляхом поділу. Проте в роботах останніх років автори притримуються думки, що мітохондрії виникають в результаті формування мітохондріальних мембран на структурах-попередниках[Лузиков, 1980; цит. за: Зотин, Зотина, 1993]. Оскільки у багатьох випадках мітохондрії здатні утворювати неперервний мітохондріальний ретикулум, або ж виникають гігантські мітохондрії [Айзенштадт, 1984], то не виключено, що остання точка зору більше відповідає реальності. Все це показує, що висловлювати які-небудь припущення щодо механізму збільшення мітохондрій у період малого росту ооцитів поки що рано.
2. Формуваннямітохондрій під час процесів розвитку.
1) оогенез
В ооцитах багатьох тварин накопичується величезна кількість мітохондрій. У зрілих ооцитах жаби в 100000 разів більше мітохондрій, ніж у соматичній клітині цього виду (щоправда, тут слід враховувати і співвідношення розмірів соматичної клітини та яйцеклітини). Веббом та Смітом [Webb, Smith, 1977; цит. за: Айзенштадт, 1984] було підраховано, що в ооциті в 300 разів більше мітохондріальної ДНК ніж ядерної, що свідчить про активний ріст кількості мітохондрій в період оогенезу.
У багатьох тварин розмноження мітохондрій відбувається в основному до початку вітелогенезу. Наприклад, у жаби в період вітелогенезу і на ранніх стадіях ембріогенезу мітохондрії практично не діляться, тобто інтенсивне розмноження іде в превітелогенних ооцитах [Айзенштадт, 1984]. Таким чином, активна реплікація мітохондріальної ДНК в превітелогенних ооцитах йде незалежно від ядерної ДНК.
Під час оогенезу більшості вищих тварин відбувається суттєва зміна ультраструктури мітохондрій. На найбільш ранніх етапах оогенезу ооцити містять дрібні одиничні рівномірно розсіяні в цитоплазмі мітохондрії з невеликою кількістю слаборозвинених крист. Наприкінці цієї стадії, при переході до малого росту, в навколоядерній зоні виникають острівці електронно-густої речовини (міжмітохондріального цементу), навколо якого концентруються мітохондрії. Це утворення локалізоване переважно з одного боку від ядра і носить назву “жовткового ядра” або “тіла Бальбіані”. У нього входять також мембрани комплексу Гольджі, цистерни гладенького ендоплазматичного ретикулуму, мультивезикулярні тільця та ліпідні гранули, проте основним компонентом є все ж мітохондрії. Функція “тіла Бальбіані” багато в чому залишається невідомою. Раніше його пов’язували із утворенням жовтку. Зараз вважають, що “тіло Бальбіані” є центром формування мітохондрій та інших клітинних органел [Озернюк, 1978].
До початку вітелогенезу структура мітохондрій (форма, кількість крист) близька до тієї, що мають ооцити, які вже закінчили ріст. Проте об’єм мітохондрій в процесі вітелогенезу продовжує зростати. Так, від початку малого росту до початку відкладення жовтка об’єм мітохондрій збільшується майже в 4 рази, а під час вітелогенезу ця величина зростає в 3,3 рази [Пальмбах, Озернюк, 1975].
Уявлення про кількісну характеристику росту мітохондріальних мембран під час оогенезу дає морфометричний аналіз мітохондрій, проведений на ооцитах в’юна (табл. 2).
Табл. 2. Розміри мітохондрій в ооцитах в’юна, що ростуть [Пальмбах, Озернюк, 1975]
Стадія оогенезу | діаметр | Обєм міто- | Протяжність, ум. од. | |
Ооцитів, мм | хондрій, мкм3 | зовнішньої мембрани | крист в мітохондрії | |
Малий ріст | ||||
початок | 75 | 0,05±0,006 | 25,5±2,8 | 16,2±2,7 |
кінець | 150 | 0,10±0,003 | 28,1±1,2 | 31,7±2,1 |
Вакуолізація цитоплазми | 400 | 0,11±0,003 | 33,8±1,3 | 79,1±4,3 |
Початок вітелогенезу | 400 | 0,18±0,006 | 35,4±1,3 | 83,4±6,4 |
Кінець великого росту | 800 | 0,65±0,11 | - | - |
На протязі малого росту ооцитів (у в’юна він триває приблизно 1 рік) об’єм мітохондрій зростає більш ніж вдвічі. Протяжність зовнішньої мембрани мітохондрій за цей період збільшується на 33%, а протяжність крист зростає в 5 разів, тобто темп росту крист значно перевищує темп росту зовнішньої мембрани мітохондрій.
Аналіз ультраструктурних особливостей ооцитів різних стадій показав, що по мірі росту розмірів мітохондрій і протяжності мембран гранулярного ендоплазматичного ретикулуму між ними встановлюються певні структурні взаємовідношення. При переході до великого росту ооцитів їх мітохондрії тісно зближуються з мембранами ендоплазматичного ретикулуму. Між мітохондріями та мембраною завжди залишається щілина від 30 до 70 нм завширшки. Слід відмітити, що на ділянках мембрани ендоплазматичного ретикулуму, зближених з мітохондріями, кількість рибосом в 2 - 3 рази більша, ніж на інших ділянках ретикулуму. [Озернюк, 1985].
Паралельно із зростанням розмірів мітохондрій в процесі оогенезу спостерігається збільшення вмісту мітохондріального білка в ооцитах, а також активності маркерного ферменту мітохондрій - цитохромоксидази. Одна із особливостей росту мітохондрій в ооцитах полягає в тому, що розміри цих органел і їх збільшення в різних зонах ооцита різні. На ранніх стадіях оогенезу відмінності малопомітні. При переході до великого росту в навколоядерній зоні площа, яку займають ці органели, приблизно вдвічі більша, ніж на периферії ооцита. Мітохондрії цих двох зон цитоплазми ооцита відрізняються також за ультраструктурою: навколо ядра локалізовані дрібні органели з невеликою кількістю слабко виражених крист, тоді як на периферії клітини розташовані великі мітохондрії з добре розвиненими кристами [Айзенштадт, 1984]..
Формування мітохондрій і їх ріст є складним багатостадійним процесом, оскільки окремі компоненти цих органел синтезуються в різних частинах клітини. Для характеристики росту мітохондрій під час оогенезу були вивчені особливості синтезу білків цих органел в ооцитах різних стадій. За результатами досліджень синтез мітохондріальних білків під час оогенезу зростає в багато разів (табл. 3)
Табл.3 Включення 14 С-валіну в білки мітохондрій ооцитів в’юна різних стадій оогенезу в дослідах invivo (Озернюк, 1976)
Стадія оогенезу | Включення 14 С-валіну | |
імп/хв/100 шт | імп/хв/мг білка | |
Малий ріст | 9342±2720 | 21173±632 |
К-во Просмотров: 155
Бесплатно скачать Реферат: Формування, ріст і розвиток мітохондрій в гаметогенезі та ранньому ембріогенезі хребетних
|