Реферат: Гамма-гамма каротаж

Применение РК для расчленения литологического состава пород
Наиболее эффективным является применение РК при изучении литологического состава разрезов скважин, представленных породами, включающими гидрохимические отложения, а также в скважинах, заполненных соленой водой.
Разрезы, включающие гидрохимические отложения, встречаются на нефтяных месторождениях Прибельской зоны (Ишимбайский район. Башкирия), Ферганской долины и некоторых других.
Данные электрического кароттажа в этом случае недостаточны. Для построения геологической колонки, литологический состав пород разреза уточняется по результатам радиоактивного кароттажа.

Некоторые виды аппаратуры и комплексирование измерений

Для точной увязки глубин при кароттаже и при перфорации следовало бы все перфораторы и приборы для радиоактивного кароттажа снабжать локаторами муфт.
Разработкой локаторов муфт занималось Конструкторское бюро нефтяной промышленности и НИИГР. В НИИГР была опробована схема с постоянными магнитами и схема с электромагнитами, питаемыми постоянным током. Установлено, что локатор при испытании отдельно от аппаратуры РК отбивает муфты, однако разделить импульсы от локатора и импульсы от счетчиков с должной четкостью пока не удается. Пришлось начать разработку более сложного локатора, питаемого переменным током.
В НИИГР проводилась также разработка аппаратуры для гамма-гамма-кароттажа. Макет прибора имел следующие отличительные особенности:
1) глубинный прибор прижимается к стенке скважины стороной, на которой размещены источник и индикатор;
2) применены галогенные счетчики, упрощающие схему аппаратуры;
3) применен дюралевый корпус, обеспечивающий слабое поглощение мягкого рассеянного излучения.
В дальнейшем продолжились испытания макета и составление технической документации на серийный прибор.

Аппаратура радиоактивного кароттажа

Существующая аппаратура радиоактивного кароттажа имеет следующие недостатки:
а) малая допустимая скорость перемещения глубинного прибора (200—300 м/час);
б) недостаточная теплостойкость.
Малая допустимая скорость перемещения глубинного прибора связана с низкой эффективностью применяемых в настоящее время индикаторов у-излучения — самогасящихся разрядных счетчиков.
Поэтому необходимо переходить к использованию аппаратуры со сцинтилляционными счетчиками, которые, надо полагать, позволят несколько повысить скорость измерений и существенно улучшить качество кривых РК.
В свое время, еще на заре начала производства такой аппаратуры, задержка Институтом нефти АН создания серийной аппаратуры со сцинтилляционными счетчиками побудила НИИГР и завод «Нефтеприбор» самостоятельно заняться разработкой этой аппаратуры.
Основное отличие этой аппаратуры, разрабатываемой под руководством Я. Я. Горского, состояло в том, что в ней в качестве источника питания вместо батарей из сухих элементов был применен высоковольтный генератор, в котором стабилизация выходного напряжения обеспечивается высоковольтным газовым стабилизатором типа СГ-9С. На этой основе была создана простая и надежно работающая схема прибора.
Применение в качестве источника напряжения высоковольтного генератора весьма упрощает эксплуатацию аппаратуры.
В 1955 г. в НИИГР был разработан макет одноканальной аппаратуры со сцинтилдяционным счетчиком; испытания его показали хорошие результаты.
Чтобы наиболее полно использовать преимущества сцинтилляционных счетчиков, необходимо иметь в достаточном количестве большие люминофоры.
Существенных успехов добился Институт машиностроения и автоматики АН УССР, который поставил ряд работ по выращиванию кристаллов.
В 1955 г. Научно-исследовательский вакуумный институт по согласованным с НИИГР техническим условиям разработал ионизационные камеры, которые, также дали некоторое повышение эффективности по сравнению с разрядными счетчиками. Однако опробование этих камер задерживалось из-за отсутствия соответствующих радиотехнических схем.

Недостаточная теплостойкость аппаратуры.
В глубоких скважинах некоторых районов наблюдается высокая температура, что затрудняет работу аппаратуры радиоактивного кароттажа. С целью обеспечения нормальной работы аппаратуры радиоактивного кароттадаа было сделано следующее.
1. По договору с НИИГР разработана технология изготовления температуростойких разрядных счетчиков.
В настоящее время мы получаем счетчики ВСТ-9, обеспечивающие возможность работы с ними до 150°.
2. Создан одноканадьный прибор для радиоактивного кароттажа при температурах до 150-—170°.
Возможность работы при высоких температурах обеспечена изменением схемы высоковольтного генератора, применением счетчиков ВСТ-9 и тщательным подбором деталей для схемы.
3. Филиалом КБНП по договору с НИИГР разработана более совершенная двухканатная аппаратура радиоактивного кароттажа.
Еще в 1955 г. были изготовлены и испытаны в лаборатории два опытных образца этой аппаратуры, которые затем были направлены на Грозненские нефтепромыслы для испытания в скважинах и опытной эксплуатации.
Наземная часть аппаратуры состоит из пульта управления с глубинным прибором и вспомогательной панели с десятичной пересчетной схемой и осциллоскопом. Регистрирующим прибором служит фоторегистратор ФР-4 иди автоматический потенциометр типа ПАСК.
Глубинный прибор, укомплектованный теплостойкими счетчиками ВСТ-9, рассчитан на внешнее давление до 800 кг /см2- и температуру до + 150°. Предусмотрена возможность дистанционного управления длиной зонда НГК, изменяющиеся в пределах от 500 до 875 мм.
Для повышения надежности работы аппаратуры и упрощения ее настройки в глубинном приборе предусмотрено формирование импульсов по амплитуде и длительности.
Следует заметить, что, к сожалению, создание двухканальной теплостойкой аппаратуры сильно задержалось уже сейчас эта аппаратура несколько отстает от современных типов аппаратуры для радиоактивного кароттажа, в которых используются сцинтилляционные счетчики.
4. С целью повышения предельной температуры применения аппаратуры со сцинтилляционными счетчиками Институтом машиностроения и автоматики АН УССР в свое время были рассмотрены возможности термостатирования фотоумножителя и люминофора.

Установлено, что наиболее простым решением данного вопроса является охлаждение льдом при условии незначительного притока тепла, что обеспечивается применением вакуумной теплоизоляции. Употребляемые для вакуумной теплоизоляции сосуды Дьюара должны проходить специальную термообработку и откачиваться при повышенной температуре.
Рассматриваемый способ термостатирования имеет тот недостаток, что перед каждым спуском глубинного прибора требуется его разбирать. Этого недостатка нет в термостате с полупроводниковым охлаждением.
5. Одним из путей создания теплостойкой аппаратуры является применение галогенных разрядных счетчиков, помещенных в сосуды Дьюара.
Относительно малые габариты счетчиков благоприятствуют этому, и, кроме того, весьма заманчивой является простота радиотехнической схемы. Однако испытание макетов этой аппаратуры, построенных НИИГР и МНИ, закончилось неудачно — вопросы термоизоляции оказались недоработанными.
Общей задачей для всего промыслово-геофизического приборостроения является повышение теплостойкости радиодеталей и электроизоляционных материалов.
Необходимо добиться выпуска теплостойких радиодеталей, вакуумных приборов и электроизоляционных материалов.

Список использованной литературы:

1. http://oil-geophysics.ru/

2. http://www.geo.oilru.ru/catalog/group/product/?2071

3. http://www.amk-gorizont.ru/service

4. http://www.tng.ru/prj/sr_girs/tr-02/

5. http://geo.web.ru/db/msg.html?mid=1161636&uri=page60.html

К-во Просмотров: 366
Бесплатно скачать Реферат: Гамма-гамма каротаж