Реферат: Гармонические колебания и их характеристики
вещественная часть выражения (8)
представляет собой гармоническое колебание. Обозначение Re вещественной части опускают и записывают в виде
.
В теории колебаний принимается, что колеблющаяся величина s равна вещественной части комплексного выражения, стоящего в этом равенстве справа.
Задачи.
1.Амплитуда гармонических колебаний материальной точки равна 5 см. Масса материальной точки 10 г и полная энергия колебаний дж. Написать уравнение гармонических колебаний этой точки (с числовыми коэффициентами), если начальная фаза колебаний равна .
Решение
Общее уравнение гармонических колебаний имеет вид
(1)
У нас А =5 см, . Период Т колебаний неизвестен, но его можно найти из условия . Отсюда
(2)
У нас м, m = кг и . Подставляя эти данные в (2), получим Т =4 сек . Тогда , и уравнение (1) примет вид см. Отметим, что так как - величина безразмерная, то А не обязательно подставлять в метрах ; наименование x будет соответствовать наименованию А.