Реферат: Геофизический “диалект” языка математики

в) Создаваемые в рамках математической геофизики алгоритмы решения задач (соответственно – реализующие их компьютерные технологии) организуются так, чтобы получались некоторые внутренние оценки надежности и точности получаемых решений. Такие оценки оказываются возможными потому, что и данные наблюдений, и имеющаяся априорная информация подразделяются на две части: во-первых, непосредственно используемая в вычислительном процессе, т.е. в процессе нахождения искомого решения задачи, а во-вторых, не используемая в вычислительном процессе, но используемая в специальных процедурах оценки точности и надежности полученных решений (иначе – контрольные данные). При получении неудовлетворительных оценок процедура нахождения решения задачи должна повторяться – при иной организации используемых данных и априорной информации. Такая переорганизация процедуры нахождения решения может производиться несколько раз. Ясно, что в рамках математической физики и теории некорректных задач подобного рода аспекты нахождения решений задач не рассматриваются вовсе.

г) В рамках математической физики рассматривается целое множество моделей помех во входных данных, которые фактически не рассматриваются в классической теории некорректных задач. Во-первых, это модели мультипликативно-аддитивных помех, при этом каждая из составляющих этой модели характеризуется целым набором числовых величин. Во-вторых, это модели помех разнородных и разноточных, т.е. с “ блочной характеристикой” . Иначе говоря, вектор помехи наделяется блочной структурой, и каждый блок (парциальный вектор помехи) наделяется собственными (различными) характеристиками помехи. Используется еще и ряд других моделей помех во входных данных решаемых задач.

д) В математической геофизике используется принципиально новый метод нахождения аналитических аппроксимаций элементов физических полей – метод интегральных представлений, который призван заменить классический метод интегральных уравнений. При этом важнейшим частным случаем этого метода является метод линейных интегральных представлений. Данные методы, см. [3,4], созданы именно в математической геофизике, они не разрабатывались в математической физике и классической теории некорректных задач.

е) В рамках математической геофизики важнейшей вычислительной проблемой признается проблема нахождения устойчивых приближенных решений систем линейных алгебраических уравнений с приближенными данными, большой (P=NM=108 –109 ) и сверхбольшой (P=NM  1010 ) размерности (здесь N – число уравнений в системе, М – число подлежащих определению неизвестных – компонент вектора x). В силу этого в ней предложен целый ряд принципиально новых конструктивных идей, используемых при разработке алгоритмов нахождения искомых решений линейных систем, см. [5-21]. Здесь прежде всего следует отметить идею редукции систем к канонической форме (в которой вектор правой части системы имеет всего одну ненулевую компоненту), идею редукции систем в канонической форме к решению одного уравнения с одной неизвестной, идею адаптивной регуляризации (основанной на использовании специальных – так называемых корреляционных ортогональных преобразований матриц систем (Прим. автора: здесь особо следует подчеркнуть тот факт, что в рамках той новой теории регуляризации систем линейных алгебраических уравнений, которая разрабатывается автором в последние годы, см. [ ], использование новых ортогональных преобразований (не рассматривавшихся ранее в вычислительной линейной алгебре) имеет в некотором смысле определяющее значение.)) и целый ряд других конструктивных идей, на которых здесь нет возможности останавливаться. Созданные в рамках математической геофизики новые алгоритмы нахождения приближенных решений систем линейных алгебраических уравнений являются новыми и для вычислительной линейной алгебры.

ж) В рамках новой математической геофизики разрабатывается принципиально новый подход к решению обратных геофизических задач, прежде всего – в гравиметрии и магнитометрии, в котором отпадает необходимость в решении сложных (по аналитике) прямых задач. (Напомним здесь, что основной метод решения обратных задач геофизики основывается на многократном варьировании моделей изучаемой геологической среды, решении соответствующих задач для каждой из моделей и сопоставлении вычисленных – для каждой модели – величин с данными наблюдений.) В рамках нового подхода, используемого в рамках теорий дискретных физических полей, используются два приема:

во-первых, прием построения эквивалентных распределений источников полей,

во-вторых, прием преобразования принимаемых модельных источников поля в соответствующие им эквивалентные.

В настоящее время возникает важная задача внедрения нового подхода в практику интерпретации геофизических данных, прежде всего – данных гравитационных и магнитных наблюдений.

3) Математическая геофизика и классическая теория некорректных задач не являются “ привязанными” к приложениям в какой-то конкретной науке. Их миссия – разработка тех основных теоретических положений, которые могут (и по существу – должны!) использоваться в самых различных науках. Именно в этом и состоит мотивация тех используемых в математической физике и классической теории некорректных задач и приведенных выше установок (трех типов) и которые естественным образом отличаются (обязаны отличаться!) от установок (новой) математической геофизики. Действительно, математическая геофизика, по данной автором переформулировке классического изречения Клаузевица (Прим. автора:Речь идет о следующем изречении: “Война есть продолжение политики другими средствами”.), имеет сугубо подчиненное значение: “ Математическая геофизика есть реализация установок общей методологии интерпретации геофизических данных средствами математики”.

Именно этим определяется различие в общих установках, именно этим определяются данные выше семь дополнительных позиций, именно в этом состоит восьмая позиция.

9. В заключение автор хотел бы подчеркнуть еще три момента.

Первый момент. Приведенные выше утверждения и соображения еще не стали “ общим местом” , еще не сформировали новый стереотип мышления геофизиков, занимающихся вопросами теории и практики интерпретации геофизических данных. Необходима огромная работа в этом направлении.

Второй момент. Изложенные в работе идеи никогда не станут эффективным средством решения задач геофизики, если на их основе не будет создано (по единому плану!) соответствующие компьютерные технологии. Нужна специальная (высокого уровня, желательно – государственного) программа создания таких технологий.

Третий момент. Изложенные в работе идеи не смогут быть быстро внедрены в сознание широкого круга геофизиков-производственников, если они не будут (притом самым быстрейшим образом) внедрены в высшее геофизическое образование. Подобное же внедрение требует целого ряда мероприятий, и прежде всего – написания принципиально новых учебников.

Автор надеется, что высказанные им соображения, утверждения и предложения станут предметом обсуждения на страницах геофизических журналов.

Обстоятельная конкретизация, в собственно математическом плане, приведенных в работе положений и утверждений, будет дана в серии последующих работ автора.

Список литературы

1. Страхов В.Н. Геофизика и математика // Физика Земли. 1995. № 12. С.4-23.

2. Страхов В.Н. Критический анализ классической теории линейных некорректных задач // Геофизика. 1999. № 3. С.3-9.

3. Страхов В.Н. Три парадигмы в теории и практике интерпретации потенциальных полей (анализ прошлого и прогноз будущего) // Известия секции наук о Земле РАЕН. 1999. № 2. С.95-135.

4. Страхов В.Н. О построении аналитических аппроксимаций аномальных гравитационных и магнитных полей // Основные проблемы теории интерпретации гравитационных и магнитных аномалий. М.: ОИФЗ РАН, 1999. С.65-125.

5. Страхов В.Н. Общая теория нахождения устойчивых приближенных решений систем линейных алгебраических уравнений с приближенно заданными правыми частями и матрицами, возникающих при решении задач геофизики // Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей. М.: ОИФЗ РАН, 1997.С.38-42.

6. Страхов В.Н. Математический аппарат, используемый при конструировании алгоритмов нахождения устойчивых приближенных решений систем линейных алгебраических уравнений, возникающих в задачах гравиметрии и магнитометрии // Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей. М.: ОИФЗ РАН, 1997. С.43-75.

7. Страхов В.Н. Экстремальные задачи, непараметрическая регуляризация и фильтрация в теории нахождения устойчивых приближенных решений систем линейных алгебраических уравнений с приближенно заданными правыми частями и матрицами // Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей. М.: ОИФЗ РАН, 1997. С.76-88.

8. Страхов В.Н. Обобщенные QR-алгоритмы нахождения устойчивых приближенных решений систем линейных алгебраических уравнений с приближенно заданной правой частью, возникающих при решении линейных задач гравиметрии и магнитометрии // Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей. М.: ОИФЗ РАН, 1997. С.87-88.

9. Страхов В.Н. Третья парадигма в теории и практике интерпретации потенциальных полей (гравитационных и магнитных аномалий). Ч. III // Электр. науч.-инф. журн. “Вестник ОГГГГН РАН”, № 1(3)'1998, М.:ОИФЗ РАН, 1998.

URL: http://www.scgis.ru/russian/cp1251/dgggms/1-98/3par3_00.htm

10. Страхов В.Н., Страхов А.В. Основные методы нахождения устойчивых приближенных решений систем линейных алгебраических уравнений, возникающих при решении задач гравиметрии и магнитометрии. I. М.: ОИФЗ РАН, 1999. 40 с.

11. Страхов В.Н., Страхов А.В. Основные методы нахождения устойчивых приближенных решений систем линейных алгебраических уравнений, возникающих при решении задач гравиметрии и магнитометрии. II. М.: ОИФЗ РАН, 1999. 52 с.

12. Страхов В.Н., Страхов А.В. К теории регуляризации линейных некорректных задач гравиметрии и магнитометрии. Ч. I // Электр. науч.-инф. журн. “Вестник ОГГГГН РАН”, № 1(7)'1999, М.:ОИФЗ РАН, 1999.

К-во Просмотров: 207
Бесплатно скачать Реферат: Геофизический “диалект” языка математики