Реферат: Гидро-климатические условия на космических снимках
Водная поверхность при пассивном способе дистанционной съемки почти полностью поглощает световой поток, поэтому на фотоизображении, полученном на панхроматическом материале в видимой зоне спектра (0,4—0,8 мкм), она бывает в целом темная и ровная. Однако величина возвращаемого падающего на воду потока энергии, т. е. отражающая способ-кость водной поверхности, зависит от многих факторов: угла 'наклона солнечных лучей, глубины водного объекта, характера грунта и водной растительности, твердого стока (речной мути) и др. Поэтому на черно-белых снимках тональность фотоизображения меняется, варьируя в очень широких пределах. Более плотный тон изображения (до черного) имеет глубокая и чистая вода, более светлый (до белого)-мелкая и загрязненная. На цветных снимках, в том числе спектрозональных, эти различия цветовые. В большинстве случаев указанные тоновые и цветовые вариации водной поверхности на снимке локальны и сравнительно легко распознаваемы, так как структура любой «неводной» поверхности характеризуется значительно более мозаичным рисунком фотоизображения.
Поверхностная гидрографическая сеть (реки, озера, водохранилища) имеет специфическую линейную и площадную конструкцию. Поэтому при дешифрировании водных объектов используются в основном геометрические, а не спектральные или текстурные признаки. В то же время в определенных диапазонах электромагнитных волн реален анализ вариации оптических плотностей, вызываемых растворами и взвесями органических и неорганических веществ, а также зависящих от толщины слоя чистой воды. Это позволяет устанавливать степень загрязнения и глубину вод.
Материалы аэрокосмической фотосъемки широко используются как в процессе создания топографических карт, так и при их обновлении. Роль самолетных и космических снимков различна. Аэроснимки применяются при картографировании в крупном масштабе, и заменить их космическими снимками пока невозможно, так как большая высота фотографирования и съемка длиннофокусными камерами не позволяют получать материалы из космоса для детального изучения рельефа фотограмметрическим методом.
Космические фотосъемки эффективны при обновлении карт. Практика показала, что при использовании космических методов можно отказаться от традиционного поэтапного метода картосоставления и перейти на технологию обновления карты требуемого масштаба, а не всего масштабного ряда. Это сокращает цикл работ на несколько лет. Кроме того, в связи с большим территориальным охватом космического снимка и малыми искажениями контуров в горных районах уменьшается трудоемкость работ по обновлению карт.
На наш взгляд, можно повысить эффективность космических методов, если использовать снимок как неотъемлемое дополнение к топографической карте. «Космическое» обеспечение карты снимет остроту проблемы постоянного и неизбежного при существующей технологии картографирования «старения» ее содержания. На практике потребитель пользуется картой, составленной несколько (нередко до 10 и более) лет назад. Поэтому ему нужно выдавать устаревшую, даже на 2— 3 года, топографическую карту и в качестве приложения — современный космический снимок. Снимок должен быть приведен к масштабу карты. В случае необходимости можно монтировать уточненную фотосхему.
Если пойти дальше, то в оптимальном варианте «космическое» сопровождение карты должно иметь тематическую направленность. Например, если потребителя интересует растительный покров, то наиболее информативной для него будет осенняя спектрозональная съемка и т. д.
Реализовать данное предложение несложно. Сделать это можно силами региональных аэрогеодезических предприятий и подразделений Госцентра «Природа». Топографические карты совместно с космическими снимками будут всегда «свежими» и более содержательными, потому что информационная емкость снимка намного превышает информационную емкость карты. При этом любой пользователь может самостоятельно отдешифрировать фотоизображение, так как большинство отобразившихся на снимке объектов местности уже расшифровано на карте. Очевидно, при планировании космических съемок необходимо учитывать и специфику топографического картографирования (масштаб, время съемки, зоны спектра и др.), и требования различных потребителей. «Космическое» приложение к карте можно поставлять заказчику ежегодно.
'На дистанционном снимке изображается внешний облик природного ландшафта, основными составляющими которого являются: почвенно-растительный покров; поверхностные воды; социально-экономические объекты. Все перечисленные группы объектов динамичны, но скорость и направление текущих изменений в каждой из них имеют свои особенности.
Оптические свойства природного ландшафта тесно коррелируют с сезонным ритмом развития растений и увлажненностью почв. Наибольшей изменчивостью сезонного хода спектральной яркости обладает летне-зеленая группа растений, наименьшей — вечнозеленая. Кроме того, спектральная яркость растений изменяется с длиной волны излучения. По исследованиям Е. А. Галкиной при длине волны 0,55 мкм она имеет максимум, при длине волны 0,70 мкм — минимум, за которым следует резкий ее рост.
Влияние фенологического состояния растительного покрова на сроки аэрофотосъемки подробно рассмотрено Л. А. Богомоловым, Р. И. Вольпе, Л. М. Гольдманом и Р. И. Вольпе и др. Исходя из требований топографического картографирования ими рекомендованы сроки съемки почвенно-растительного покрова для всех ландшафтных зон СССР. Сроки аэрокосмической съемки растительности для составления фенологических карт проанализированы Н. Г. Хариным.
Отметим, что в целом благоприятные сроки съемки растительности охватывают довольно широкие пределы (от времени завершения формирования листового полога до начала листопада) и не являются лимитирующим фактором для съемки поверхностных вод, оптимальный диапазон времени фотографирования которых значительно короче. Вместе с тем подчеркнем, что для целей тематического картографирования (например, лесохозяйственного, почвенного и др.) оптимальные сроки дистанционной съемки, выбор типа фотоматериала и зон спектра имеют особое значение.
Как известно, водные объекты характеризуются изменчивостью плановых очертаний, вызываемой сезонными колебаниями уровня воды. Поэтому при обосновании сроков съемки для топографии необходимо учитывать соответствие фазы уровенного режима состоянию вод, которое принято для картографирования. На этом вопросе мы подробно остановимся ниже. При тематическом картографировании нередко важен учет площадных гидрологических характеристик, так как многие параметры (например, площадь разлива рек, граница распространения снежного покрова) чрезвычайно динамичны и для их изучения требуется временная привязка аэрокосмической съемки с точностью до дня. Можно указать на литературу, в которой этот вопрос прорабатывается с самых различных позиций.
Социально-экономические объекты по сравнению с природным ландшафтом более стабильны. Ход их развития имеет в основном однонаправленный характер (расширяется или сужается площадь застройки населенных пунктов, прокладывается новая дорога, сооружается дамба и т. д.). Антропогенные объекты обладают, как правило, специфическими дешифровочными признаками и сравнительно легко распознаются на аэрокосмических снимках. Но в некоторых случаях это не исключает необходимости лимитирования сезона, месяца, дня или даже времени суток съемки. Так, при изучении древних оросительных систем эффективна съемка после кратковременных дождей или при низком стоянии солнца. После дождей в аридных районах буйно зеленеет пустынная растительность, а при низком стоянии солнца хорошо заметны тени от малейших неровностей земли, что является хорошим демаскирующим признаком.
Оптимальные сроки дистанционной съемки рек, озер и водохранилищ
Береговая линия рек, озер и водохранилищ наносится на типографическую карту по фотоизображению. В большинстве случаев граница воды и суши непостоянна и смещается в плане на величину, зависящую от амплитуды колебаний уровня воды и угла наклона берегового склона. Допустимая величина смещения береговой линии на местности во время дистанционной съемки при картографировании в разных масштабах неодинакова. При расчете табличных данных принято, что сдвиг береговой линии не должен превышать 0,5 мм на карте. Это соответствует средней ошибке положения. на ней контуров местности.
Как видно из таблицы, наиболее жесткие требования к стабильности планового положения береговой линии водных объектов предъявляются при создании карт крупного масштаба Уклоны аккумулятивных берегов многих рек Сибири составляют всего несколько градусов, а колебания уровня воды даже после схода половодья или в период между паводками исчисляются метрами. В этих условиях возникает необходимость строгого учета уровенного состояния водных объектов при аэрокосмической съемке в картографических целях.
Речная и озерная сеть должны изображаться на карте по состоянию на картографический уровень воды. Но в связи постоянно изменяющимся уровнем воды (например, на р. Нижняя Тунгуска суточная амплитуда колебаний может достигать 1-2 м.) зафиксировать на снимке очертания водных объектов по состоянию на заранее установленный уровень воды трудно. Иногда для этого необходимо провести дорогостоящие и трудоемкие работы. Практически при проведении аэрокосмических съемок в картографических целях ориентируются на примерное соответствие мгновенного (при фотографировании) уровня воды срезочному, принятому для ближайшего водомерного поста. При этом каких-либо критериев, регламентирующих предельно допустимые отклонения уровня воды во время съемки от принятого за оптимальный, нет. Поэтому нередки случаи, когда дистанционная съемка выполняется в произвольные сроки, без учета уровенного состояния водных объектов, что приводит к неудовлетворительным результатам.
Вопрос обоснования уровенных условий съемки вод требует специальной проработки. Величина допустимой амплитуды колебаний уровня воды должна дифференцироваться для каждого участка водотока или для каждого озера. Так, средняя многолетняя амплитуда колебаний уровня воды открытого русла на р. Подкаменной Тунгуске изменяется по длине реки следующим образом: в верхнем течении — на 1 м, в среднем (с. Ванавара) — на 6 м, в нижнем (с. Байкит) — на 12 м.
Если принять единый допуск на отклонение мгновенного (при дистанционной съемке) уровня воды от установленной нормы по какому-то одному посту, то этот допуск не будет «работать» при удалении вверх или вниз по течению реки. Например, если за исходный пункт принять створ у с. Ванавара, то приемлемая для него величина отклонения уровня воды от принятой нормы будет завышенной для верховьев реки и недостаточной для низовьев. В первом случае (верховье реки) допустимый для створа у с. Ванавара интервал уровня воды будет больше его годовой амплитуды, во втором (низовье реки) — он окажется явно недостаточным. Следовательно, рассматриваемый допуск должен соотноситься с амплитудой колебаний уровня воды, этому критерию удовлетворяет картографический интервал уровней воды, так как его величина функционально связана с амплитудой колебаний уровня воды в любом створе реки или в озере.
При проведении аэрокосмической съемки в целях создания или обновления топографических карт, а также для решения ряда задач комплексного изучения и картографирования природных условий и ресурсов необходимо иметь следующую информацию о состоянии вод исследуемой территории: во-первых, когда наблюдается фаза водности, уровни воды при которой находятся в пределах картографического интервала высот; во-вторых, какова продолжительность стояния уровней воды (число дней в году) в картографическом интервале высот. Последняя важна для оценки категории сложности съемки.
Для определения этих параметров на опорных гидрологических створах рек Сибири вычислены: картографический уровень воды; картографический интервал уровней воды; средняя годовая повторяемость уровней воды в картографическом интервале высот. Далее, по данным стандартных гидрологических наблюдений Гидрометеослужбы, установлено наилучшее время дистанционной съемки, т. е. месяцы, в которые наблюдалась наибольшая повторяемость уровней воды в оптимальной шкале высот. По полученным материалам построены карты наилучших сроков аэрокосмической съемки рек в картографических целях (рис. 71, 72). При этом выявлено, что продолжительность стояния уровней воды в картографическом интервале высот изменяется зонально и по высотным поясам, т. е. отражает общие географические закономерности гидрологического режима рек. Так, в пределах Среднесибирского плоскогорья на широте 55—60" этот параметр для рек местного стока равен приблизительно 100 дней, на широте 70°— 30 дней. В горах с увеличением высоты он уменьшается. Например, в северных предгорьях Саян он находится в пределах 80—90 дней, а в верхнем поясе гор сокращается до 30 дней в году.
Оптимальные сроки дистанционной съемки крупных, особенно зарегулированных рек, могут не совпадать со сроками съемки рек местного стока. В этих случаях целесообразна дополнительная съемка по маршрутам вдоль крупных рек. Возможно также использование материалов ранее выполненных аэрокосмических съемок, удовлетворяющих поставленным требованиям. Этот вариант более экономичный, так как космические съемки ведутся несколько раз в год, а плановые деформации русел рек за 1—2 года в большинстве случаев не превышают графическую точность даже крупномасштабных карт. При дистанционной съемке половодий и паводков на реках необходима оперативная информация территориальных управлений по гидрометеорологии, поскольку время их наступления и максимального развития находится в зависимости от гидрометеорологических условий конкретного года.
Годовой ход уровня воды озер в целом повторяет ход уровня воды рек. Поэтому сроки их аэрокосмической съемки практически совпадают.
Водохранилища, за исключением мелких, наносятся на топографическую карту при нормальном подпорном уровне воды. Аэрокосмическая съемка их должна выполняться после наполнения, что для большинства крупных водохранилищ Сибири отмечается в сентябре (Новосибирское водохранилище — в июле, Усть-Илимское — в августе). Уровни воды, близкие к НПУ, держатся практически до появления ледовых явлений. Как и для рек, для водохранилищ можно обозначить допустимые пределы высоты уровня воды во время дистанционной съемки. Такой интервал ΔА зависит от величины проектной сработки водохранилища А и вычисляется по формуле
ΔАвдхр=НПУ±0,1А.
Для отображения сезонной динамики береговой линии целесообразно наносить на карту положение уреза воды и при сработке водохранилищ. Поэтому дистанционная съемка их должна производиться в два срока, т. е. дополнительно еще весной, сразу после очищения воды ото льда. Для водохранилищ юга Сибири, это время обычно наступает в конце апреля-начале мая, для северных водохранилищ-во второй половине июня или в начале июля.
Дешифрирование вод на аэрокосмических фотоснимках
В связи с развитием дистанционных исследований методика тематического дешифрирования снимков быстро наполняется новым содержанием. Двигателем этого прогресса является практическая необходимость значительного расширения круга изучаемых природоведческих проблем (ресурсного, динамического, прогнозного и других направлений), а также внедрение автоматизированных систем обработки дистанционной информации, что требует более глубокого учета географических закономерностей и взаимосвязей между компонентами природной среды. Новые подходы, базирующиеся на комплексной интерпретации мелкомасштабных снимков, особенно заметны в космическом землеведении.
С уменьшением масштаба на снимке теряются многие детали изображения природной среды, но в результате «космической» (спектральной, геометрической и тематической) генерализации на нем «проявляется» новая информация. Например, за счет более высокой степени визуализации крупных полей с различной оптической плотностью надежно дешифрируются линеаменты, кольцевые структуры, морские течения и другие природные объекты и явления. С другой стороны, потеря деталей привела к необходимости более глубокого учета взаимосвязей между составляющими природных комплексов (выявления косвенных, ландшафтных признаков дешифрирования), что в свою очередь значительно повысило достоверность результатов.
Известно, что объем регистрируемой на снимке информации во многом зависит от спектрального диапазона съемки. При съемке в видимом диапазоне электромагнитных волн (0,4—0,8 мкм) определяющее значение имеет интегральная яркость объекта, а при съемке в узком диапазоне — спектральная.
Природные тела (вода, растительность, горные породы и др.) характеризуются различной отражательной способностью, которая дифференцируется также для фиксированных длин электромагнитных воли. Эксперименты показали, что, несмотря на влияние на яркостные характеристики местности внешних факторов (высоты солнца, прозрачности атмосферы и др.), выделяются длины электромагнитных волн, в которых та или иная группа объектов регистрируется на снимке более контрастно.
На графике видно, что, например, для целей гидрологического дешифрования повышенной информативностью обладают снимки, полученные в диапазоне 0,6—0,8 мкм. В этом случае водная поверхность резко «вычленяется» на фоне изображения других природных образований. Появляется широкая возможность автоматизированного распознавания объектов посредством математической формализации процесса дешифрирования и использования современных систем цифровой обработки изображений.
Методика топографического и тематического специального' дешифрирования природных объектов и явлений на дистанционных снимках базируется на общих принципах, изложенных в ряде работ.