Реферат: Інструментальні матеріали
Оксидна (біла) кераміка складається з оксиду алюмінію (Al2 O3 )≈99% з незначними домішками оксиду магнію (MgO) і інших елементів. Сюди відносяться марки ВО13;ЦМ332;ВШ75. Пластинки з білої кераміки виготовляють методом холодного пресування з послідуючим спіканням. Основна область застосування – чистова обробка сірих чавунів і негартованих сталей. Розмір зерен – біля 1-2 мкм. Низька міцність на згин (σзг =0,3-0,4 гПа) і термоциклічна втома дозволяють використовувати ці матеріали тільки для чистових і напівчистових операцій при наявності вібростійкого обладнання, але зате швидкість різання може досягати 300-600 м/хв.
Оксидно-карбідна (чорна) кераміка складається з оксиду алюмінію (60-80%) і карбідів тугоплавких металів (TiC;WC;MoC) – до 40%. Сюди відносяться матеріали марок В3;ВОК60;ВОК63. Пластинки з оксидно-карбідної кераміки одержують методом гарячого пресування в графітових прес-формах, тому вони дорожчі. Оксидно_карбідна кераміка служить, в основному, для обробки від білених чавунів, цементованих, гартованих і термічно покращених сталей і видержують температура в процесі різання до 1300 о С.
Пластинки з оксидно-карбідної кераміки мають дрібнішу структуру ніж з білої кераміки, вищу твердість і зносостійкість, краще сприймають термічні навантаження. Але в порівнянні з твердими сплавами їх міцність і опір термоциклічним навантаженням значно менші, тому вони використовуються тільки для чистової і напівчистової обробки.
Оксидно-нітридна кераміка складається з нітриду кремнію і тугоплавких металів з домішками оксиду алюмінію і деяких інших компонентів – це матеріали картиніт ОНТ20 і силініт-Р (твердість 94-96 НRA , швидкість різання 1500 м/хв). Картиніт використовують для обробки загартованих сталей (НRC 30-55) ковких, модифікованих і відбілених чавунів з твердістю НВ 300-600, термо-покращених сталей.
Силініт Р займає проміжне місце між твердими сплавами на карбідній основі і надтвердими матеріалами на основі алмазу і нітриду бору. Дослідження показали, що його можна застосовувати при чистовій обробці чавуну, сталей сплавів алюмінію і титану. Основна його перевага в не дефіцитності вихідних матеріалів.
1.4.ПОЛІКРИСТАЛІЧНІ НАДТВЕРДІ МАТЕРІАЛИ
До цієї групи відносяться алмази і кубічний нітрид бору. Алмаз найтвердіший з всіх відомих матеріалів, його твердість 100 гПа., він має високу зносостійкість. Добру теплопровідність, малий коефіцієнт тертя і малу адгезію з металами ( за виключенням заліза і його сплавів з вуглецем). Недоліки алмазу як інструментального матеріалу це низька теплостійкість (800о С) і значна хрупкість, що вимагає жорсткого і вібростійкого обладнання.
Різальні інструменти виготовляють як з природних так і з штучних алмазів. Штучні (синтетичні) алмази виготовляють з графіту при тисках біля 1000 гПа і температурі біля 2500о С з витримкою від мікросекунд до десятків секунд. При цих умовах гексагональна гратка графіту перетворюється в кубічну гратку природного алмазу.Природні і штучні алмази мають одинакові параметри кристалічної гратки, близькі фізичні і хімічні властивості, але синтетичні алмази значно дешевші і їх властивості можна регулювати в процесі виготовлення. В техніці біля 90% алмазних інструментів виготовлені на основі синтетичних алмазів.
Промисловість випускає синтетичні алмази у вигляді порошків (монокри-стали), полікристалів і композиційних матеріалів. Алмазні порошки використовуються для виготовлення абразивного інструменту, Для виготовлення лезового інструменту використовуються полікристали марок: баллас, карбонадо, карболіт. Карбонадо кращі балласів, їх міцність позволяє видержувати значні без ударні навантаження, робоча температура не вище 650о С.
В останні 10-15 років активно розвивається новий напрям створення алмазних матеріалів –CVD (chemikalvapourdeposition – метод хімічного осадження з газової фази). Він відомий з 1889 року. Його суть у вирощуванні твердого матеріалу з газової фази з використанням суміші реакційних газів, з яких поступають необхідні реагенти на поверхню підложки.
При вирощуванні алмазів CVDметодом таким реагентом є вуглець. Цей метод при використанні реагентів дуже високої чистоти дає можливість одержувати кристали алмазу оптичної якості.
На відміну від синтезу в умовах високої температури і тиску (НР/НТ метод) вирощування алмазу СVD методом проходить при високій температурі і тиску нижче атмосферного. Алмаз, одержаний CVDметодом, являє собою полікристалічний матеріал з зернистою структурою. Вирощувані за тонко-плівковою технологією зерна СVD алмазу ростуть з дрібних зерен, які зростаються і , по мірі збільшення і потовщення шару, надають СVD алмазу стовбчасту структуру. Твердість CVDкристала алмазу становить 81± 18 гПа, а монокристал має 57 гПа в площині 100 і 104 гПа в площині 111.
Полікристали мають ряд переваг: розмір Ø=8мм, що спрощую кріплення, мають однорідну зернисту будову (відсутня анізотропія через наявність не алмазних (графітних і карбідних) фаз, електропровідні, міцність на згин в 2-3 рази вище алмазу. Вони використовуються для обробки титанових сплавів, високо кремнієвих сплавів, композиційних матеріалів, мінералокераміки, забезпечують високу точність, але мало ефективні при обробці сплавів на основі заліза, дорогі.
На основі синтетичних алмазів випускаються композиційні матеріали у яких підложка 2-4 мм твердосплавна пластинка і алмазне покриття товщиною ≈1 мм, що позволяє об’єднати високу твердість і зносостійкість алмазів і міцність твердого сплаву.
Композити. Основою полікристалічних надтвердих матеріалів, які мають комплект унікальних фізико-механічних і експлуатаційних властивостей, складає нітрид бору (ВN). Це ковалентне зєднання бору з азотом. В природі воно не зустрічається. Нітрид бору відкритий і синтезований в першій половині ХІХ століття, він має кристалічну гратку графіту, має високу температуру плавлення (>2200о К), не розчиняється ні в одному з відомих розчинників, проводить електричний струм. Відомі три види нітриду бору: ВNг –гексагональний графітоподібний, ВNк – кубічний і ВNв –вюрцитоподібний. На основі останніх двох синтезуються всі відомі полікристалічні надтверді матеріали. Синтез відбувається при температурі 1600-2300 о К і тиску 4,0-7,5 гПа в присутності каталізаторів, або без них. Вперше кубічний нітрид бору був синтезований у США в 1957 році, а в СРСР- у 1959 році.
Кубічний нітрид бору (КБН) синтетичний надтвердий матеріал на основі нітриду бору відноситься до числа ефективних інструментальних матеріалів і широко використовується для різних видів абразивних і лезових інструментів. Як показала практика, КНБ не може конкурувати з алмазом при обробці таких твердих і хрумких матеріалів як металокерамічні тверді сплави, скло, граніт, і ряд інших неметалічних матеріалів. В той же час, завдяки теплостійкості і дифузійній стійкості, не проявляючи при обробці металів і сплавів хімічної спорідненості до заліза, КНБ є перспективним для обробки вказаних матеріалів, в тому числі інструментальних сталей, особливо швидкорізальних нормальної і підвищеної продуктивності.
Починаючи з 90х років спостерігається значне збільшення виробництва КНБ і до кінця ХХ століття об’єм його випуску становив 15 тон в рік. Продаж інструментів на основі КНБ перевищує декілька мільярдів доларів США. На ринку СНД найбільш відомі торгові марки КНБ – це кубаніт, що випускається Науково-технологічним алмазним концерном „Алкон” НАН України (НТАК „Алкон”) і ельбор Абразивного заводу „Ильич” Росія, а в далекому зарубіжжі – бора зон „Дженерал Електрик” США.
Кубаніт – це хімічне з’єднання двох елементів – бору(43,6%) і азоту (56,4%). Він має кристалічну гатку з майже такою ж будовою, як алмаз. По твердості він приближається до алмазу, але має більш високу теплостійкість і дифузійну стійкість. Мікротвердість КНБ знаходиться в границях 80-90 гПа (алмаз100гПа), теплостійкість 1200о С, щільність 3,45 Г/см3 (менша ніж у алмаза). Міцність шліф порошків з КНБ відповідає міцності шліф порошків з синтетичних алмазів марок АС2, АС4, АС6, АС15. Порошки кубаніта виготовляють у вигляді мікро порошків марки КМ і шліф порошків КО,КР,КВ.
В останній час до надтвердих матеріалів відносять матеріали, що містять композицію Si-Al-O-N(торгова марка “сіалон”) в основі яких лежить нітрид кремнію Si3 N4 .Комбінація цієї основи з різними елементами позволяє створити матеріали з різними властивостями, наприклад “силініт”(створений ІПМ АН УРСР), який використовується для напівчистової обробки чавунів в тому числі і відбілених і інших матеріалів, що дають стружку надлому.
На основі кубічного нітриду бору випускаються матеріали марок “ельбор Р” (К01), який використовується для чистової обробки загартованих сталей і чавунів; гексаніт (К10) використовується для чистової обробки гартованих сталей(НRC 40-68), чавунів і твердих сплавів; композит К05 використовується для напівчистової обробки чавунів і інших матеріалів, які дають стружку надлому. Цілий ряд такого класу матеріалів випускають фірми Японії, США, Англії, Німеччини.
Випускаються ці матеріали у вигляді непереточуваних твердосплавних пластинок з нанесеним на них шаром надтвердого покриття.
1.5 МЕТОДИ ПІДВИЩЕННЯ ЗНОСОСТІЙКОСТІ ІНСТРУМЕНТУ
Традиційні методи підвищення зносостійкості шляхом складного легування інструментальних матеріалів практично вичерпали свої можливості. Розроблено методи підвищення зносостійкості, які ґрунтуються на створенні на робочих поверхнях інструменту тонких поверхневих шарів з заданими властивостями. Найбільш розповсюджені хіміко-термічні методи (ціанування, азотування, нітроцементація, борування…). Тут зміна хімічного складу поверхневого шару досягається за рахунок дифузії різних елементів з зовнішнього середовища в матеріал інструменту. Найбільше розповсюдження одержало ціанування, після якого на поверхні сталевого інструменту утворюється шар товщиною 20-30 мкм твердістю НКС 70.високої тепло і зносостійкості. За рахунок цього стійкість інструменту підвищується в 1,5-2 рази.
Нанесення покрить на інструментальні матеріали позволяє створити новий комплекс властивостей з збереженням необхідної властивості основи. Ці способи одержали широкий розвиток і розділяються на 2 методи:
1. Хімічне осадження покрить з газової фази (СVD метод) ґрунтується на конденсації твердих осадків з газоподібних з’єднань. При цьому температура підложки дуже висока (1000-1100 0 С) і цей метод можна використовувати тільки для нанесення покрить на тверді сплави. Матеріал покриття: TiC; ТiN;TiNC;ZrN; HfC; MoC; MoN; CrN; TaN.
2. Фізичні методи (РVD): КІБ – конденсація з іонним бомбардуванням інструменту, РЕП- реактивно іонно променеве осадження покрить у вакуумі. Тут температура відносно не висока (420-620 0 С) і ці методи можна використовувати для нанесення покрить на швидкорізальні сталі і тверді сплави. На основі КІБ методу працюють установки “Булат” і установки іонного азотування. Із збільшенням температури в зоні різання PVD покриття значно менше втрачають у твердості ніж CVD покриття.
В інституті надтвердих матеріалів ім.. В.М.Бакуля НАН України відкрито явище поглинання металічних розплавів без пористими спеченими композиційними матеріалами. На основі цього явища розроблена нова технологія одержання твердосплавних виробів з градієнтною структурою. Формування градієнтної структури досягається шляхом високотемпературної металічними розплавами спечених виробів. Цю технологію називають ОМР. Випробування показали, що бурові долота, які мають твердосплавні вставки з градієнтною структурою, мають у 2 рази вищу стійкість, ніж серійні.
Технологія ОМР позволяє створювати градієнтні структури на мікро і субмікро рівнях, керувати поліморфним перетворенням в Со –фазі і таким чином гальмувати розвиток тріщин, що виникають в процесі стомлювання, в твердосплавних виробах. Так при різанні металів в зоні різальної кромки різця виникають мікро тріщини. Під дією змінних полів напружень і температурних полів ці мікро тріщини ростуть, утворюють сітку мезотріщин, в результаті чого різець виходить з ладу. Для подавлення росту мікро тріщин пропонується проводити легування різальної кромки, використовуючи технологію ОМП, і таким чином створювати градієнтні структури в зоні різальної кромки. Легування можна проводити любими металами і неметалами.
Розроблено технології, що позволяють наносити покриття (до 10-15 шарів) без значного збільшення їх товщини. Японська фірма “SumitomoElectric” створила надтонке гладке покриття з “надструктурою” ZX (TiN/AlN), яке при товщині 2,5 мкм складається з 2000 шарів (товщина шару 1,25 нм). Твердість покриття 4000 НV, що спів розмірно з твердістю КНБ. Використовується в різальних інструментах для обробки сталей, чавунів, жароміцних матеріалів при високій температурі і великих подачах. Швейцарська фірма “Frаisa” розробила технологію DSC(подвійного покриття), що позволяє одержувати передню і задню поверхні інструменту з різними властивостями. На задню поверхню наноситься тверде термічно ізолююче покриття, а на передню поверхню – шар покриття з коефіцієнтом тертя близьким до 0. Фірма “Winter” для обробки чавунних відливок створила різальні пластинки з двома функціональними покриттями: на передній поверхні-чорне, а на задній – золотисте, збільшивши продуктивність обробки на 75%.