Реферат: Интеграция обмена углеводов, белков и жиров в организме. Транспортные системы в организме человека

2) Соединений, специфически взаимодействующих с активным центром фермента (субстраты, коферменты).

3) Соединений, взаимодействующих специфически с ферментом вне его активного центра.

В результате взаимодействия этих веществ с ферментами происходит изменение пространственной конфигурации ферментного белка (конформационные изменения) на уровне третичной или четвертичной структуры.

1. рН, t и т.д. поддерживаются постоянными в узких, оптимальных для жизнедеятельности клетки пределах. 2. Повышение концентрации субстратов и коферментов обычно ускоряет ферментативные реакции

Аллостерическое взаимодействие – это взаимодействие метаболита или другого регуляторного фактора с участком ферментативного белка, в результате изменяется конформация белковой молекулы фермента и фермент теряет свои каталитические свойства.

По сравнению с молекулярным, клетка значительно более высокий качественно иной уровень организации биохимических процессов. Здесь имеется компактная саморегулирующаяся система. Наиболее характерная ее особенность – это структурная упорядоченность. Детальное разделение функций между отдельными органоидами. Роль важнейшего компонента выполняет биологическая мембрана. Главное содержание регуляции на клеточном уровне – координация различных метаболических процессов:

Сопряженность процессов субстратного дегидрирования и транспорта водородов и электронов в цепи дыхательных катализаторов, сопряжение окисления и фосфорилирования, образование макроэргических соединений и их трата, способность переключать метаболизм с аэробного режима на анаэробный, координация процессов биосинтеза белков и нуклеиновых кислот. В связи с этим особенно важны ферментативные реакции и метаболизм узловых этапов обмена.

На уровне целостного организма многие клетки приобретают специализированные функции, связанные с взаимодействием организма с внешней средой и поддержание постоянства внутренней среды. Регуляция обмена веществ при участии нервной и гуморальной систем на уровне целостного организма обладает совершенством и дает возможность сложному многоклеточному организму на этом уровне организации приобрести максимальную степень автономности по отношению к изменяющимся факторам внешней среды. Конечная цель регуляции на уровне целостного организма – поддержание оптимального значения основных параметров и “внутренней среды”, в которой живут клетки организма. Объектом регуляции являются те же самые метаболические процессы, как и на клеточном уровне регуляции. Разница заключается в том, что на уровне целостного организма избирательность действия регуляторного агента проявляется в отношении всего органа или ткани, в которых процесс подвергается изменению. Система регуляции приспособлена к выбору такого варианта регуляции, который позволяет максимально использовать специфическую роль того или иного органа в адаптации обмена целостного организма в новых условиях.

Регуляция обмена веществ на уровне целостного организма не только повышает адаптационные возможности клеток организма, но и влияет на собственный метаболизм каждой клетки. Если на первых этапах метаболический аппарат клетки работает в соответствии с генетической программой, то по мере усложнения связей клетки со всем организмом все большее значение приобретают факторы нейрогуморального характера. Для сохранения жизнедеятельности организма особое значение имеет поддержание стабильного химического состава крови как ткани, объединяющей всю внутреннюю среду организма в единое целое.

Это обеспечивается согласованной работой органов непосредственно регулирующих синтез и поступление в кровь ряда веществ, а с другой – выведение ее конечных продуктов обмена. Подобный механизм регуляции клеточного обмена по типу обратной связи с включением ЦНС, эфферентных нервов, гуморальных звеньев и органов-регуляторов внутренней среды, по-видимому, лежит в основе регуляторных отношений в целостном организме.

Таким образом, организм человека бесконечно более сложен чем простой конгломерат или совокупность различного типа клеток.

Клетки, дифференцированные для осуществления специфических, биохимических и физиологических функций, взаимодействуют друг с другом, образуя ткани, которые, в свою очередь, структурно организованы в виде органов. Такая организация обеспечивает рациональное разделение функциональной активности, но требует участия контролирующих и согласующих работу различных органов и тканей, с тем, чтобы она гармонично соответствовала потребностям организма.

Эту интегрирующую роль играют 3 важнейшие системы :

Нервная система – является центром обработки информации и принятия решений, воспринимающей импульсы (недостаточность кислорода, голод, жажда, боль), а также передающий соответствующие команды другим органам.

Эндокринная система – фабрика и хранилище химических передатчиков (посредников) оказывающих разнообразные воздействия на рост, размножение и развитие, а также на другие важнейшие функции организма (поддержание в крови постоянства концентрации глюкозы, липидов, кальция, обеспечение оптимального соотношения синтеза и распада компонентов тканей).

Сосудистая система – которая служит для переноса всех химических соединений в организме.

В норме все эти 3 системы взаимодействуют бесперебойно.

Воздействие гормонов эндокринной системы осуществляется через ток крови и в зависимости от концентрации их регулирует секрецию этих гормонов по принципу отрицательной обратной связи. Взаимосвязь между превращениями углеводов, жиров и белков в процессе обмена веществ осуществляется следующим образом:

Углеводы, белки и липиды могут образовываться в результате процессов, имеющих сходное энергетическое обеспечение, из общих предшественников и промежуточных продуктов, общих конечных путей окисления углерода и водорода. При биосинтезе разнообразных органических соединений или макромолекул в качестве источников энергии используются либо АТФ, либо НАДН или НАДФН, поставляющие восстановительную энергию. Если в клетке осуществляется синтез определенного класса соединений, это должно происходить за счет катаболизма другого вещества. Например, когда от печени требуется увеличение синтеза глюкозы, она не может одновременно синтезировать белки и жиры, наоборот возникает необходимость осуществить гидролиз части имеющихся белков и жиров для обеспечения синтеза НАДН и АТФ для нужд глюконеогенеза. Общие предшественники и промежуточные продукты обмена являются предпосылкой возникновения еще одного уровня взаимосвязей метаболических путей. Общий фонд углеводов влияет на процессы синтеза липидов и белков. Наиболее важным общим промежуточным продуктом обмена веществ, представляющим решающее связующее звено, является ацетил КоА. Общим конечным путем для всех систем метаболизма являются цикл лимонной кислоты и реакции дыхательной цепи. Эти протекающие в митохондриях процессы используются для координации целого ряда метаболических реакций на различных уровнях. Цикл лимонной кислоты является в клетке главным источником двуокиси углерода для реакций карбоксилирования, с которых начинается синтез жирных кислот и глюконеогенез. Та же двуокись углерода поставляет углерод для мочевины и некоторых звеньев пуриновых и пиримидиновых колец.

Взаимосвязь между процессами углеводного и азотистого обмена также достигаются посредством промежуточных продуктов цикла лимонной кислоты. Существует несколько путей, по которым промежуточные продукты цикла лимонной кислоты включаются в процесс липогенеза. Расщепление цитрата приводит к образованию ацетил КоА, играющего роль предшественника в биосинтезе жирных кислот.

Изоцитрат и малат обеспечивают образование НАДФ, который расходуется в последующих восстановительных этапах синтеза жиров.

Роль ключевого фактора, определяющего превращение НАДН играет состояние адениннуклеотидов. Высокое содержание АДФ и низкое АТФ свидетельствует о малом запасе энергии. При этом НАДН вовлекается в реакции дыхательной цепи, усиливая сопряженные с запасанием энергии процессы окислительного фосфорилирования. Обратное явление наблюдается при низком содержании АДФ и высоком АТФ. Ограничивая работу системы переноса электронов, они способствуют использованию НАДН в других восстановительных реакциях, таких как синтез глутамата и глюконеогенез. В некоторых случаях биохимические процессы в клетках узкоспециализированы и функции клеток весьма ограничены, в других случаях клетки обладают способностью осуществлять самые разнообразные ферментативные превращения.

По многообразию и приспособляемости ни один другой орган не может сравниться с печенью, в которой происходят сложные взаимосвязанные процессы обмена веществ, воздействующие на весь организм. Печень как железа наделена и экзокринными и эндокринными функциями. Продуктом внешней секреции является желчь, выделяемая в желудочнокишечный тракт. Продуктами внутренней секреции печени являются не гормоны, а метаболиты, которые разносятся током крови и используются другими клетками, изменяя их функции. Это: глюкоза, которая используется для гликолиза, триацилглицериды – для липогенеза. Кетоновые тела – используются в мышечной и нервной тканях как источники энергии. Печень ответственна за синтез альбумина, сывороточных липопротеидов и факторов свертывания крови. Процессы обмена жиров в печени и жировой клетчатке неразрывно связаны между собой. Существует взаимосвязь между процессами обмена веществ в мышечной и печеночной тканях на нескольких уровнях. Процесс глюконеогенеза осуществляется как в печени, так и в почках и они взаимосвязаны. Наконец, тесно связаны между собой и процессы обмена в тканях мозга и печени, прежде всего из-за того, что нервная ткань целиком зависит от бесперебойной доставки глюкозы, которая обеспечивается печенью.

Таким образом здоровый организм находится в равновесии с окружающей средой.

Транспортные системы в организме человека.

Метаболические процессы, протекающие во всех клетках тела, требуют непрерывного притока питательных веществ и кислорода и непрерывного удаления продуктов обмена. У некоторых видов животных транспортная система, кроме того, служит для переноса гормонов из эндокринных желез в те органы, на которые они воздействуют, а также участвует в регуляции температуры тела.

У человека система кровообращения слагается из кровеносных сосудов, наполняющей их крови и сердца, приводящего кровь в движение. Кровь состоит из жидкой плазмы и взвешенных в ней кровяных клеток. В большинстве случаев переносимый кровью кислород не просто растворен в плазме, а соединен с тем или иным гемопротеидом, это гемоглобин, находящийся в эритроцитах. Система кровеносных сосудов у человека состоит из артерий, вен и капилляров.

Артерии и вены – это крупные сосуды, которые отличаются друг от друга направлением тока крови и строением стенок. Артерии несут кровь от сердца к тканям, а вены возвращают ее от тканей к сердцу. Капилляры –микроскопические сосуды, которые находятся в тканях и соединяют артерии с венами. Тонкие стенки капилляров состоят из одного слоя клеток эндотелия, через который различные вещества могут переходить из крови в ткани и обратно. Кровь не вступает в прямое соприкосновение с клетками организма, они омываются тканевой жидкостью. Для того чтобы достигнуть клеток, вещества должны перейти из крови через стенку капилляра и через пространство, заполненное тканевой жидкостью. Стенка капилляра имеет крупные поры, чем плазматическая мембрана клеток, через них легко диффундирует глюкоза, аминокислоты и мочевина, а также ионы натрия, хлора и др.

Помимо кровеносной системы имеется еще одна группа сосудов, образующих лимфатическую систему. Лимфатические сосуды образуют вспомогательную систему для возврата жидкости из тканевых пространств в систему кровообращения. Лимфатические капилляры весьма проницаемы и через стенку вместе с тканевой жидкостью внутрь легко проникают белковые молекулы и другие крупные частицы.

К-во Просмотров: 171
Бесплатно скачать Реферат: Интеграция обмена углеводов, белков и жиров в организме. Транспортные системы в организме человека