Реферат: Иоганн Кеплер

Детство и юность

В двух десятках километров на запад от Штутгарта — главного города земли Баден-Вюртемберг (Германия), среди Живописных холмов невдалеке от лесистого Шварцвальда расположился небольшой провинциальный городок Вейль-дер-Штадт всего с шестью тысячами жителей. Многое на­поминает здесь о давно минувших днях — древние город­ские стены, средневековые дома, старинная ратуша и цер­ковь с тремя шпилями. На центральной площади памят­ник—на высоком постаменте застыл с циркулем в руке немолодой человек в старинной одежде.

Рассказывают, что когда в начале 1945 г. к городку по­дошли французские войска, командование решило подвер­гнуть Вейль-дер-Штадт мощному артиллерийскому обстре­лу, опасаясь, что за крепкими стенами нашли убежище недобитые гитлеровцы. Однако огонь так и не был открыт: командир отменил артиллерийский налет, узнав, что перед ним родной город Кеплера. Это обстоятельство спасло го­родок от значительных разрушений и сохранило его Древ­ний облик.

В этом городе (носившем тогда более краткое название Вейль) 27 декабря 1571 г. в 2 часа 30 минут пополудни в доме бургомистра ро­дился Иоганн Кеплер — знаменитый астроном, физик и математик конца XVI — первой трети XVII в. В те далекие времена в городке проживало всего около двухсот семейств бюргеров, в большинстве ремесленников: ткачей и кожевников.

Кеплеры обосновались в Вейле около 1520 г., когда сюда из Нюрнберга переселился прадед будущего астро­нома, скорняк Себальд Кеплер, сын переплетчика. У Себальда Кеплера, одно время выполнявшего обязан­ности городского казначея, была большая семья. Один из его сыновей, тоже Себальд, женатый на Катерине Мюллер из ближнего городка Марбах, был с 1569 по 1578 г. бурго­мистром Вейля. И его бог не обидел детьми ¾ их было ровно дюжина. Четвертым по старшинству был Генрих, отпраздновав­ший 16 мая 1571 г. свадьбу с дочерью деревенского трак­тирщика из соседнего селения Эльтингена Катериной Гульденман. Жениху и невесте было в то время по 24 года. Через семь с половиной месяцев после свадьбы у них по­явился первенец — маленький и очень слабый ребенок, названный при крещении Иоганном.

О неблагоприятной обстановке, в которой прошло детство ученого, можно судить по характеристикам, которые Кеплер дал своим ближайшим родственникам в фамильном гороскопе, составленном им уже в зрелом возрасте, в 1597 году. Вот что он пишет о своем отце:

«Генрих, отец мой, родился 19 января 1547 года. ... Человек злобный, непреклонный, сварливый, он обречен на худой конец ..., скиталец ... в 1574 г. мой отец уже в Бельгии. В 1575 мать отправилась в Бельгию и вместе с отцом возвратилась. В 1576 отец опять оказался в Бельгии, а в 1577 ... едва избежал опасности быть повешенным. Он продал свой дом и открыл харчевню. В 1578 ... воспламенилась банка ружейного пороха и изуродовала лицо отца ... в 1589 ... оставив мать тяжело больной, он исчез из дому окончательно ...». В таком окружении грубых необразованных людей прошли первые годы жизни маленького Иоганна. Его детство и юность были омрачены и другими обстоятельствами — отсутствием надлежащего ухода и очень слабым здоровьем, предрасполагавшим к частым и длительным заболеваниям. Слабое здоровье было серьезным препятствием для астрономических наблюдений в холодные ночи, но еще большим препятствием был врожденный недостаток зрения — сильная близорукость и монокулярная полиопсия (множественное зрение) — состояние глаза, обычно неисправимое, при котором фиксируемый одиночный объект кажется множественным.

Известной компенсацией за невзгоды детства была для Кеплера относительная доступность образования в тогдашнем Вюртемберге. Хотя родителей, видимо, мало заботило образование Иоганна, в семилетнем возрасте (в 1578 г.) они поместили его в начальную немецкую школу, где обучали чтению, письму и элементарным навыкам в вычислениях.

Еще перед окончанием школы родители стали думать, что делать дальше с мальчиком. Малосильность и слабое здоровье не позволяли использовать его на тяжелых полевых работах. Советы учителей, денежные соображения и в меньшей мере религиозные побуждения привели их к решению выбрать для ребенка духовную карьеру. Путь к высоким духовным постам давало окончание теологического факультета университета, для поступления на который нужно было окончить низшую и высшую семинарии. Кеплер начинает обучение в 1584 году в грамматической школе (низшей семинарии) в Адельсберге, а через 2 года, с 26 ноября 1586 г., продолжает учебу в высшей семинарии в Маульбронне. Программа обучения была очень обширная: кроме богословия, изучались римские и греческие классики, риторика и диалектика, математика и музыка. Режим был жесток: занятия в классах начинались зимой в 5 часов утра, а летом — в 4.

25 сентября 1588г. Кеплер выдерживает в Тюбингене экзамен на степень бакалавра, после чего еще год продолжает учебу в Маульбронне. 17 сентября 1589 г. начинается его учеба в Тюбингенском университете. Среди преподавателей университета, имевших влияние на молодого Кеплера, следует отметить профессора классической филологии Мартина Крузиуса (1526 — 1607), богослова Маттиаса Гафенреффера (1561 — 1619), позже ректора университета, и особенно Михаэля Местлина (1550 — 1630). Местлин очень скоро заметил необычайные способности Кеплера к математике и астрономии, проявлявшиеся, в частности, в том, что тот выводил новые теоремы (как их тогда называли — предложения) и делал построения, лишь потом убеждаясь, что они уже известны. Местлин ввел молодого ученого в круг немногих своих воспитанников, пользовавшихся его особым доверием, среди которых он пропагандировал коперниканское учение. Наряду с астрономией Кеплер уже в те годы интересо­вался астрологией, что для него было не только данью вре­мени, но и соответствовало его тогдашним представлениям о причинности и взаимосвязях между явлениями. Среди студентов он слыл большим мастером в составлении горо­скопов.

Во второй половине 1594 г. теологическое образование Кеплера должно было завершиться. Но в первые месяцы этого года, прежде чем он смог получить документы об окончании университета, открывавшие ему формально путь к блестящей духовной карьере, неожиданно произош­ли события, в результате которых наметился решающий поворот в его жизни и деятельности. В протестантской средней школе в Граце, главном городе австрийской про­винции Штирии, скончался преподаватель математики, воспитанник Тюбингена Георг Стадиус. Штирийская проте­стантская община обратилась в сенат Тюбингенского уни­верситета с просьбой подыскать достойного преемника среди университетских воспитанников. Преподава­телей математики в Тюбингене, как, видимо, и в других тогдашних университетах, специально не готовили, и вы­бор сената, не без участия Мёстлина, пал на 22-летнего магистра искусств Иоганна Кеплера, лучше других подго­товленного к этой деятельности. Хоть и не хотелось Кеплеру оставлять учебу, а вместе с ней и мечту о духовной карьере, а деваться было неку­да — он был обязан подчиниться постановлению сената и отправиться по назначению. «Я воспитывался на счет герцога Вюртембергского и ... решился принять первую предложенную мне должность, хотя и с не особенной охотой», — писал он позже.

Кеплер в Граце. «Космографическая тайна»

Обстановка, окружавшая Кеплера в Граце, мало бла­гоприятствовала его научной деятельности. Ибо, как за­метил его друг Коломан Цегантмаир, секретарь барона Герберштейна, штирийская знать проявляла поразитель­ное невежество во всем, обладала варварской точкой зре­ния в своих суждениях, ненавидела науку и ничем мень­ше не интересовалась, чем учеными. Предмет, преподавать который предстояло Кеплеру, не вызывал у дворянских и бюргерских отпрысков энтузиаз­ма. Изучение математики не было, видимо, обязательным, и если в первый год его уроки еще посещало несколько учащихся, то на следующий не осталось ни одного. Одна­ко контролировавшие работу преподавателей инспекторы оказались достаточно великодушными, не ставя это в ви­ну учителю, так как, по их мнению, на «изучение матема­тики не всяк способен». Взамен математики Кеплеру при­шлось преподавать арифметику, классическую литерату­ру (Вергилия), риторику и другие предметы.

Вместе с должностью преподавателя по существовав­шей традиции он приобретал также звание и должность «Landschaftsmathematikus» (т. е. математика провинции [Штирии]), ему вменялось также в обязанность ежегодно составлять календари. В изданном в две краски первом календаре Кеплера содержались различные астрономические сведения, в том числе данные о фазах Луны, о положении планет и Солн­ца среди звезд, краткие статьи об астрономических и фи­зических явлениях. Следуя давно установившейся тради­ции, а также заботясь о «сохранении жалованья, должно­сти и крова», пришлось «для удовлетворения безрассуд­но-глупого любопытства» приложить к календарю «Про­гнозы» («Prognostika») — виды на погоду и на урожай, политические и иные предсказания астрологического ха­рактера. Кеплер неоднократно весьма скептически и до­вольно самокритично оценивал свои занятия составле­нием календарей и астрологией для заработка. В одном из писем он высказывается так: «Чтобы ищущий истину мог свободно предаваться этому занятию, ему необходи­мы по меньшей мере пища и кров. У кого нет ничего, тот раб всего, а кому охота идти в рабы? Если я сочиняю календари и альманахи, то это, без сомнения,— прости мне, господи,— великое рабство, но оно в настоящее вре­мя необходимо. Избави я себя хоть на короткое время от этого — мне пришлось бы идти в рабство еще более уни­зительное. Лучше издавать альманахи с предсказаниями, чем просить милостыню. Астрология — дочь астрономии, хоть и незаконная, и разве не естественно, чтобы дочь кормила свою мать, которая иначе могла бы умереть с голоду». Воздействие небесных светил на обитателей Земли Кеплер пытался объяснить в связи с появлением коме­ты 1607 г. следующим образом: «Если действительно верно, что согласно порядку природы появление кометы вызывает, а значит и предве­щает такие явления, как ветер, наводнения, засуху, земле­трясения или чуму, то это должно происходить следующим образом: когда на небе появляется какой-нибудь исклю­чительный феномен, то жизненные силы всех естествен­ных вещей должны испытывать это. Эта симпатия, свя­зывающая все с небом, простирается в особенности на силу, скрытую в Земле и господствующую над ее внут­ренним состоянием. Вследствие этого из Земли выде­ляются влажные испарения, влекущие за собой дожди, наводнения, а под конец и чуму». Однако ограниченный характер астрологических пред­сказаний не раз подчеркивался Кеплером: «Тот астролог, который предсказывает некоторые вещи по небу, не учи­тывая характера, души, разума, силы и телосложения того, кому он должен предсказать, поступает неправиль­но»,—писал он.

В то же время вера Кеплера в астрологию подтвер­ждается многими фактами, и среди них следующим: в январе 1598 г. у него родился сын Генрих, а у Местлина — сын Август. Составляя им гороскопы, Кеплер при­шел к выводу, что обоих ждет скорая смерть. Не искажая этот страшный прогноз, он сообщает его Местлину. Дети и в самом деле вскоре умерли, но не в предсказанное время.

Летом 1595 г. Кеплер, как ему показалось, подошел к большому открытию: он решил, что им обнаружены важ­нейшие закономерности в строении мира, установлена пер­вопричина взаимного расположения планет Солнечной си­стемы. Еще в студенческие годы, позна­комившись через Местлина с учением Коперника, Кеп­лер стал убежденным его приверженцем. При этом, одна­ко, новое астрономическое учение укладывалось у него в рамки религиозного сознания, откуда и черпались им ис­точники новых построений. Стремясь глубоко проникнуть в тайны строения Вселенной, он хочет достичь этого по­знанием божественных планов творения мира. Будучи уве­ренным в существовании мудрого промысла божьего, он думает, что при сотворении мира бог должен был исходить из простых числовых свойств и соотношений, использо­вать совершенные геометрические формы. Этот пифагорейско-платоновский подход к изучению вопросов миро­здания лег в основу его первого большого астрономического исследования, интенсивную работу над которым он развернул примерно через год после приезда в Грац.­

В числе первых вопросов, возникших перед Кеплером, был следующий: почему существует только шесть планет, а не двадцать, или, скажем, сто? Этот вопрос предстояло решить вместе с объяснением относительной величины рас­стояний между траекториями движения планет. Попыт­кой ответить на вопросы такого рода начались многолет­ние исследования, которые в конце концов привели к от­крытию законов движения планет. Сначала он предположил, что между параметрами пла­нетных орбит должны быть простые соотношения, выра­жающиеся целыми числами. «Я затратил много времени на эту задачу, на эту игру с числами, но не смог найти никакого порядка ни в численных соотношениях, ни в от­клонениях от них» — пишет он в предисловии к «Космо­графической тайне». Затем он попытался решить эту задачу, предположив существование дополнительных, еще не открытых по при­чине малых размеров, планет: одну из них он поместил между Меркурием и Венерой, а другую — между Марсом и Юпитером, рассчитывая, что теперь удастся обнаружить желанные соотношения, но и этот прием не привел его к ожидаемым результатам.

Рис. 1

«Я потратил почти все лето на эту тяжелую работу, и в конце концов совершенно случайно подошел к истине». 9 июля 1595 г. — Кеплер скрупулезно зафиксировал эту дату, — решая с учениками какую-то геометрическую за­дачу, он начертил на классной доске равносторонний тре­угольник со вписанной в него и описанной около него ок­ружностями (см. Рис.1). Внезапно его озарила мысль, которая явилась, по его мнению, ключом к разгадке тайны Вселенной. Прикинув отношение между радиусами ок­ружностей, он заметил, что оно близко к отношению радиу­сов круговых орбит Сатурна и Юпитера, как они были вы­числены Коперником (здесь отношение R : r = 2 : 1, а от­ношение RС : RЮ = 8.2 : 5.2, по Копернику). В дальнейшем ход рассуждений был таким: Сатурн и Юпитер — «пер­вые» планеты (считая по направлению к Солнцу) и «тре­угольник — первая фигура в геометрии. Немедленно я попытался вписать в следующий интервал между Юпите­ром и Марсом квадрат, между Марсом и Землей — пяти­угольник, между Землей и Венерой —шестиугольник...». Во времена Кеплера было известно только шесть планет Солнечной системы, наблюдаемых невооруженным взглядом: Меркурий, Венера, Земля, Марс, Юпитер и Сатурн. Планета Уран была открыта В. Гершелем много позже — в 1781 г., Нептун открыт астрономом Галле и математиком Леверье в 1846 г., Плутон был обнаружен только в 1930 г.

Но дело не ладилось, хотя, казалось, цель была совсем близкой. «И вот я снова устремился вперед. Зачем рассмат­ривать фигуры двух измерений для пригонки орбит в пространстве? Следует рассмотреть формы трех измерений, и вот, дорогой читатель, теперь мое открытие в Ваших руках!». Можно построить любое число правиль­ных многоугольников на плоскости, но можно построить лишь ограниченное число правильных многогранников в пространстве трех измерений. Такими правильными мно­гогранниками, все грани которых являются правильными и равными между собой многоугольниками и все двугран­ные углы которых равны между собой, являются: те­траэдр (4 треугольные грани), куб (6 граней-квадратов), октаэдр (8 треугольных граней), додекаэдр (12 пятиугольных граней) и икосаэдр (20 треугольных граней).

Важным свойством правильных многогранников явля­ется существование для каждого из них вписанного и описанного шаров (сфер) таких, что поверхность вписан­ного шара касается центра каждой грани правильного многогранника, а поверхность описанного шара проходит через все его вершины. Центры этих шаров совпадают между собой и с центром соответствующего многогран­ника. Еще древним грекам было известно, что число видов правильных многогранников ограничивается пятью. Но ведь и промежутков между планетами, подумал Кеплер, тоже пять. Как трудно было допустить, что это простая случайность (к тому же умозаключение опиралось на не­верное представление о числе планет) и как заманчиво было видеть в этом совпадении мудрость творца. Ответ на вопрос, почему планет шесть, не меньше и не больше, казалось найден. Одновременно назревает и решение во­проса об относительных расстояниях между орбитами пла­нет: в сферу, на которой расположена орбита Сатурна, вписан куб, в него вписана следующая сфера — с орбитой Юпитера, далее последовательно вписаны тетраэдр, сфе­ра Марса, додекаэдр, сфера Земли, икосаэдр, сфера Вене­ры, октаэдр, сфера Меркурия, в центре всей системы у коперниканца Кеплера, разумеется, Солнце, и — тайна Вселенной раскрыта, раскрыта молодым учи­телем протестантской школы в Граце и математиком про­винции Штирии.

Рис. 2 Правильные многогранники (из книги Кеплера «Космографическая тайна»)


Математический аппарат, применяемый в этом случае, достаточно элементарен, дело сводится к вы­числениям зависимостей между радиусами сфер, описан­ных вокруг соответственных правильных многогран­ников и вписанных в них. Пусть, например, радиус орбиты Земли, а значит и соответст­вующей сферы, равен 1. Эта сфера опи­сана вокруг икосаэдра, в который вписана сфера Венеры. Решая геометрическую задачу на опреде­ление радиуса сферы, вписанной в икосаэдр, и сравнивая полученную величину с радиусом описанной вокруг ико­саэдра сферы Кеплер получил соотношение 0,762 : 1. Относительные расстояния до Солнца для шести пла­нет Солнечной системы, полученные Коперником и Кепле­ром, и современные усредненные значения приводятся в таблице:

Меркурий

Венера

Земля

Марс

Юпитер

Сатурн

По Копернику

0,379

0,719

1,000

1,520

5,219

9,174

По Кеплеру

0,419

0,762

1,000

1,440

5,261

9,163

Современные усред­ненные значения

0,387

0,723

1,000

1,524

5,203

9,539

Видим, что данные Кеплера весьма значительно отличаются от вычисленных еще Коперником, и притом во всех случаях — в сторону ухудшения. Объясняя эти расхождения, Кеплер предположил, что каждая из планетных сфер, не будучи материальной, тем не менее имеет некоторую толщину.

Закончив рукопись, Кеплер озаглавил ее так: «Prodromos dissertationem cosmographicum continens Mysterium cosmographicum» — «Предвестник космографических исследований, содержащий космографическую тайну».

Главный поиск. «Новая астрономия»

Над «Новой астрономией» Кеплер работал с небольши­ми перерывами с 1600 по 1606 г. Значение этой книги состоит прежде всего в том, что в ней дан вывод двух из трех знаменитых законов движения планет, названных его именем. В современной формулировке эти законы обыч­но звучат так:

I. Все планеты движутся по эллипсам, в одном из фокусов которых (общем для всех планет) находит­ся Солнце.

II. Площади, описываемые радиусами-векторами пла­нет, пропорциональны времени.

К-во Просмотров: 380
Бесплатно скачать Реферат: Иоганн Кеплер