Реферат: Использование солнечной энергии
Не только у нас в стране занимаются проблемой использования солнечной энергии. В первую очередь заинтересовались гелиоэнергетикой ученые стран, расположенных в тропиках, где в году бывает очень много солнечных дней. В Индии, например, разработали целую программу использования солнечной энергии. В Мадрасе действует первая в стране солнечная электростанция. В лабораториях индийских ученых работают экспериментальные опреснительные установки, зерносушилки и водяные насосы. В Делийском университете изготовлена холодильная гелиоустановка, способная охлаждать продукты до 15 градусов ниже нуля. Так что солнце может не только нагревать, но и охлаждать! В соседней с Индией Бирме студенты из технологического института в Рангуне построили кухонную плиту, где солнечное, тепло используется для приготовления пищи.
Даже в Чехословакии, расположенной значительно севернее, работают сейчас 510 установок солнечного теплоснабжения. Общая площадь их действующих коллекторов вдвое превышает размеры футбольного поля! Солнечные лучи обеспечивают теплом детские сады и животноводческие фермы, открытые плавательные бассейны и индивидуальные дома.
В городе Ольгин на Кубе вступила в строй оригинальная солнечная установка, разработанная кубинскими специалистами. Она расположена на крыше детской больницы и обеспечивает ее горячей водой даже в те дни, когда солнце закрыто облаками. По мнению специалистов, такие установки, появившиеся уже и в других кубинских городах, помогут экономить много топлива.
Строительство «солнечного поселка» начато в алжирской провинции Мсила. Всю энергию жители этого довольно большого поселения будут получать от солнца. Каждый жилой дом в этом поселке будет оборудован солнечным коллектором. Отдельные группы солнечных коллекторов обеспечат энергией промышленные и сельскохозяйственные объекты. Специалисты Национальной научно-исследовательской организации Алжира и Университета ООН, спроектировавшие этот поселок, уверены, что он станет прообразом тысяч подобных поселений в жарких странах.
Право называться первым солнечным поселением оспаривает у алжирского поселка австралийский городок Уайт Клиффс, который стал местом строительства оригинальной солнечной электростанции. Принцип использования солнечной энергии здесь особый. Ученые Национального университета в Канберре предложили использовать солнечное тепло для разложения аммиака на водород и азот. Если этим компонентам дать возможность вновь соединиться, выделится тепло, которое можно использовать для работы электростанции точно так же, как и тепло, получаемое при сжигании обычного топлива. Этот метод использования энергии особенно привлекателен тем, что энергию можно запасать впрок в виде еще не прореагировавших азота и водорода и использовать ее ночью или в ненастные дни.
Монтаж гелиостатов Крымской солнечной электростанции
Химический метод получения электричества от солнца вообще довольно заманчив. При его использовании солнечную энергию можно будет запасать впрок, хранить ее как любое другое топливо. Экспериментальная установка, работающая по такому принципу, создана в одном из научных центров в ФРГ. Основной узел этой установки — параболическое зеркало диаметром 1 метр, которое при помощи сложных следящих систем постоянно направлено на солнце. В фокусе зеркала концентрированные солнечные лучи создают температуру 800—1000 градусов. Этой температуры достаточно для разложения серного ангидрида на сернистый ангидрид и кислород, которые закачиваются в специальные емкости. При необходимости компоненты подаются в регенерационный реактор, где в присутствии специального катализатора из них образуется исходный серный ангидрид. При этом температура повышается до 500 градусов. Потом тепло можно использовать для того, чтобы превратить воду в пар, вращающий турбину электрогенератора.
Ученые Энергетического института имени Г. М. Кржижановского проводят эксперименты прямо на крыше своего здания в не столь уж солнечной Москве. Параболическое зеркало, концентрируя солнечные лучи, нагревает до 700 градусов газ, помещенный в металлический цилиндр. Горячий газ не только может превратить в теплообменнике воду в пар, который приведет во вращение турбогенератор. В присутствии специального катализатора он по пути может быть превращен в окись углерода и водород—энергетически значительно более выгодные продукты, чем исходные. Нагревая воду, эти газы не пропадают —они просто остывают. Их можно сжечь и получить дополнительную энергию, причем тогда, когда солнце закрыто тучами или ночью. Продумываются проекты использования солнечной энергии для накопления водорода — как предполагается, универсального топлива будущего. Для этого можно употребить энергию, полученную на солнечных электростанциях, расположенных в пустынях, то есть там, где энергию использовать на месте трудно.
Существуют и совсем необычные пути. Солнечный свет сам по себе может расщепить молекулу воды, если будет присутствовать подходящий катализатор. Еще экзотичнее уже существующие проекты крупномасштабного производства водорода с помощью бактерий! Процесс идет по схеме фотосинтеза: солнечный свет поглощается, например, синезелеными водорослями, которые довольно быстро растут. Эти водоросли могут служить пищей для некоторых бактерий, в процессе жизнедеятельности выделяющих из воды водород. Исследования, которые провели с разными видами бактерий советские и японские ученые, показали, что в принципе всю энергетику города с миллионным населением может обеспечить водород, выделяемый бактериями, питающимися сине-зелеными водорослями на плантации площадью всего 17,5 квадратных километров. По расчетам специалистов Московского государственного университета, водоем размером с Аральское море может обеспечить энергией почти всю нашу страну. Конечно, до воплощения в жизнь подобных проектов еще далеко. Эта остроумная идея и в XXI веке потребует для своего осуществления решить многие научные и инженерные задачи. Использовать для получения энергии живые существа вместо огромных машин — идея, стоящая того, чтобы поломать над ней голову.
Проекты электростанции, где турбину будет вращать пар, полученный из нагретой солнечными лучами воды, разрабатывается сейчас в самых различных странах. В СССР экспериментальная солнечная электростанция такого типа построена на солнечном побережье Крыма, вблизи Керчи. Место для станции выбрано не случайно— ведь в этом районе солнце светит почти две тысячи часов в год. Кроме того, немаловажно и то, что земли здесь солончаковые, не пригодные для сельского хозяйства, а станция занимает довольно большую площадь.
Станция представляет собой необычное и впечатляющее сооружение. На огромной, высотой более восьмидесяти метров, башне установлен солнечный котел парогенератора. А вокруг башни на обширной площадке радиусом более полукилометра концентрическими кругами располагаются гелиостаты —сложные сооружения, сердцем каждого из которых является громадное зеркало, площадью более 25 квадратных метров. Очень непростую задачу пришлось решать проектировщикам станции — ведь все гелиостаты (а их очень много — 1600!) нужно было расположить так, чтобы при любом положении солнца на небе ни один из них не оказался в тени, а отбрасываемый каждым из них солнечный зайчик попал бы точно в вершину башни, где расположен паровой котел (поэтому башня и сделана такой высокой). Каждый гелиостат оснащен специальным устройством для поворота зеркала. Зеркала должны двигаться непрерывно вслед за солнцем — ведь оно все время перемещается, значит, зайчик может сместиться, не попасть на стенку котла, а это сразу же скажется на работе станции. Еще больше усложняет работу станции то, что траектории движения гелиостатов каждый день меняются: Земля движется по орбите и Солнце ежедневно чуть-чуть меняет свой маршрут по небу. Поэтому управление движением гелиостатов поручено электронно-вычислительной машине — только ее бездонная память способна вместить в себя заранее рассчитанные траектории движения всех зеркал.
Строительство солнечной электростанции
Под действием сконцентрированного гелиостатами солнечного тепла вода в парогенераторе нагревается до температуры 250 градусов и превращается в пар высокого давления. Пар приводит во вращение турбину, та — электрогенератор, и в энергетическую систему Крыма вливается новый ручеек энергии, рожденной солнцем. Выработка энергии не прекратится, если солнце будет закрыто тучами, и даже ночью. На выручку придут тепловые аккумуляторы, установленные у подножия башни. Излишки горячей воды в солнечные дни направляются в специальные хранилища и будут использоваться в то время, когда солнца нет.
Мощность этой экспериментальной электростанции относительно
невелика — всего 5 тысяч киловатт. Но вспомним: именно такой была мощность первой атомной электростанции, родоначальницы могучей атомной энергетики. Да и выработка энергии отнюдь не самая главная задача первой солнечной электростанции — она потому и называется экспериментальной, что с ее помощью ученым предстоит найти решения очень сложных задач эксплуатации таких станций. А таких задач возникает немало. Как, например, защитить зеркала от загрязнения? Ведь на них оседает пыль, от дождей остаются потеки, а это сразу же снизит мощность станции. Оказалось даже, что не всякая вода годится для мытья зеркал. Пришлось изобрести специальный моечный агрегат, который следит за чистотой гелиостатов. На экспериментальной станции сдают экзамен на работоспособность устройства для концентрации солнечных лучей, их сложнейшее оборудование. Но и самый длинный путь начинается с первого шага. Этот шаг на пути получения значительных количеств электроэнергии с помощью солнца и позволит сделать Крымская экспериментальная солнечная электростанция.
Советские специалисты готовятся сделать и следующий шаг. Спроектирована крупнейшая в мире солнечная электростанция мощностью 320 тысяч киловатт. Место для нее выбрано в Узбекистане, в Каршинской степи, вблизи молодого целинного города Талимарджана. В этом краю солнце светит не менее щедро, чем в Крыму. По принципу действия эта станция не отличается от Крымской, но все ее сооружения значительно масштабнее. Котел будет располагаться на двухсотметровой высоте, а вокруг башни на много гектаров раскинется гелиостатное поле. Блестящие зеркала (72 тысячи!), повинуясь сигналам ЭВМ, сконцентрируют на поверхности котла солнечные лучи, перегретый пар закрутит турбину, генератор даст ток 320 тысяч киловатт—это уже большая мощность, и длительное ненастье, препятствующее выработке энергии на солнечной электростанции, может существенно сказаться на потребителях. Поэтому в проекте станции предусмотрен и обычный паровой котел, использующий природный газ. Если пасмурная погода затянется надолго, на турбину подадут пар из другого, обычного котла.
Разрабатывают солнечные электростанции такого же типа и в других странах. В США, в солнечной Калифорнии, построена первая электростанция башенного типа «Солар-1» мощностью 10 тысяч киловатт. В предгорьях Пиренеев французские специалисты ведут исследования на станции «Темис» мощностью 2,5 тысячи киловатт. Станцию «ГАСТ» мощностью 20 тысяч киловатт запроектировали западногерманские ученые.
Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.
Согласно расчетам, солнце должно помочь в решении не только энергетических проблем, но и задач, которые поставил перед специалистами наш атомный, космический век. Чтобы построить могучие космические корабли, громадные ядерные установки, создать электронные машины, совершающие сотни миллионов операций в секунду, нужны новые
материалы — сверхтугоплавкие, сверхпрочные, сверхчистые. Получить их очень сложно. Традиционные методы металлургии для этого не годятся. Не подходят и более изощренные технологии, например плавка электронными пучками или токами сверхвысокой частоты. А вот чистое солнечное тепло может оказаться здесь надежным помощником. Некоторые гелиостаты при испытаниях легко пробивают своим солнечным зайчиком толстый алюминиевый лист. А если таких гелиостатов поставить несколько десятков? А затем лучи от них пустить на вогнутое зеркало концентратора? Солнечный зайчик такого зеркала сможет расплавить не только алюминий, но и почти все известные материалы. Специальная плавильная печь, куда концентратор передаст всю собранную солнечную энергию, засветится ярче тысячи солнц.
Высокотемпературная печь с диаметром зеркала в три метра.
Солнце плавит металл в тигле
Проекты и достижения, о которых мы рассказали, используют для получения энергии солнечное тепло, которое затем преобразуется в электричество. Но еще более заманчив другой путь — прямое преобразование солнечной энергии в электричество.
Впервые намек на связь электричества и света прозвучал в трудах великого шотландца Джеймса Клерка Максвелла. Экспериментально эта связь была доказана в опытах Генриха Герца, который в 1886—1889 годах показал, что электромагнитные волны ведут себя точно так же, как и световые, — так же прямолинейно распространяются, образуя тени. Ему удалось даже сделать гигантскую призму из двух тонн асфальта, которая преломляла электромагнитные волны, как стеклянная призма — световые.
Но еще десятью годами раньше Герц неожиданно для себя заметил, что разряд между двумя электродами, происходит гораздо легче, если эти электроды осветить ультрафиолетовым светом.
Эти опыты, не получившие развития в работах Герца, заинтересовали профессора физики Московского университета Александра Григорьевича Столетова. В феврале 1888 года он приступил к серии опытов, направленных на изучение таинственного явления. Решающий опыт, доказывающий наличие фотоэффекта — возникновение электрического тока под воздействием света, —был проведен 26 февраля. В экспериментальной установке Столетова потек электрический ток, рожденный световыми лучами. Фактически заработал первый фотоэлемент, который впоследствии нашел многочисленные применения в самых разных областях техники.
В начале XX века Альберт Эйнштейн создал теорию фотоэффекта, и в руках исследователей появились, казалось бы, все инструменты для овладения этим источником энергии. Были созданы фотоэлементы на основе селена, потом более совершенные — таллиевые. Но они обладали очень малым коэффициентом полезного действия и нашли применение только в устройствах управления, подобных привычным турникетам в метро, в которых луч света преграждает дорогу безбилетникам.
Следующий шаг был сделан, когда учеными были подробно изучены открытые еще в 70-х годах прошлого века фотоэлектрические свойства полупроводников. Оказалось, что полупроводники гораздо эффективнее металлов преобразуют солнечный свет в электрическую энергию.
Академик Абрам Федорович Иоффе мечтал о применении полупроводников в солнечной энергетике еще в 30-е годы, когда сотрудники руководимого им Физико-технического института АН СССР в Ленинграде Б. Т. Коломиец и Ю. П. Маслаковец создали медно-таллиевые фотоэлементы с рекордным по тому времени коэффициентом полезного действия — 1%! Следующим шагом на этом направлении поиска было создание кремниевых фотоэлементов. Уже первые образцы их имели коэффициент полезного действия 6%. Используя такие элементы, можно было подумать и о практическом получении электрической энергии из солнечных лучей.
Первая солнечная батарея была создана в 1953 году. Поначалу это была просто демонстрационная модель. Какого-то практического применения тогда не предвиделось — слишком мала была мощность первых солнечных батарей. Но появились они очень вовремя, для них вскоре нашлось ответственное задание. Человечество готовилось шагнуть в космос. Задача обеспечения энергией многочисленных механизмов и приборов космических кораблей стала одной из первоочередных. Существующие аккумуляторы, в которых можно было бы запасти электрическую энергию, неприемлемо громоздки и тяжелы. Слишком большая часть полезной нагрузки корабля ушла бы на перевозку источников энергии, которые, кроме того, постепенно расходуясь, скоро превратились бы в бесполезный громоздкий балласт. Самым заманчивым было бы иметь на борту космического корабля собственную электростанцию, желательно — обходящуюся без топлива. С этой точки зрения солнечная батарея оказалась очень удобным устройством. На это устройство и обратили внимание ученые в самом начале космической эры.
Уже третий советский искусственный спутник Земли, выведенный на орбиту 15 мая 1958 года, был оснащен солнечной батареей. А теперь широко распахнутые крылья, на которых размещены целые солнечные электростанции, стали неотъемлемой деталью конструкции любого космического аппарата. На советских космических станциях «Салют» и «Мир» солнечные батареи в течение многих лет обеспечивают энергией и системы жизнеобеспечения космонавтов, и многочисленные научные приборы, установленные на станции.
Автоматическая межпланетная станция «Вега»
На Земле, к сожалению, этот способ получения больших количеств электрической энергии — дело будущего. Причины этого— уже упоминавшийся нами небольшой пока коэффициент полезного действия солнечных элементов. Расчеты показывают: чтобы получить большие количества энергии, солнечные батареи должны занимать огромную площадь — тысячи квадратных километров. Потребность Советского Союза в электроэнергии, например, могла бы удовлетворить сегодня лишь солнечная батарея площадью 10 тысяч квадратных километров, расположенная в пустынях Средней Азии. Сегодня произвести такое громадное количество солнечных элементов практически невозможно. Применяемые в современных фотоэлементах сверхчистые материалы — чрезвычайно дорогостоящие. Чтобы их изготовить, нужно сложнейшее оборудование, применение особых технологических процессов. Экономические и технологические соображения пока не позволяют рассчитывать на получение таким путем значительных количеств электрической энергии. Эта задача остается XXI веку.
Гелиостанция