Реферат: История систем распознавания образов
-Распознавание лиц и других биометрических данных;
- Распознавание речи [7, c. 26].
3. Методы распознавания образов
В целом, можно выделить три метода распознавания образов: Метод перебора. В этом случае производится сравнение с базой данных, где для каждого вида объектов представлены всевозможные модификации отображения. Например, для оптического распознавания образов можно применить метод перебора вида объекта под различными углами, масштабами, смещениями, деформациями и т. д. Для букв нужно перебирать шрифт, свойства шрифта и т. д. В случае распознавания звуковых образов, соответственно, происходит сравнение с некоторыми известными шаблонами (например, слово, произнесенное несколькими людьми).
Второй подход - производится более глубокий анализ характеристик образа. В случае оптического распознавания это может быть определение различных геометрических характеристик. Звуковой образец в этом случае подвергается частотному, амплитудному анализу и т. д.
Следующий метод - использование искусственных нейронных сетей (ИНС). Этот метод требует либо большого количества примеров задачи распознавания при обучении, либо специальной структуры нейронной сети, учитывающей специфику данной задачи. Тем не менее, его отличает более высокая эффективность и производительность. Подробно нейронные сети мы рассматривали в "КИ" N 15, 16, 17 за 2005 г [9, c. 84].
4. История распознавания образов
Рассмотрим кратко математический формализм распознавания образов. Объект в распознавании образов описывается совокупностью основных характеристик (признаков, свойств). Основные характеристики могут иметь различную природу: они могут браться из упорядоченного множества типа вещественной прямой, либо из дискретного множества (которое, впрочем, так же может быть наделено структурой). Такое понимание объекта согласуется как потребностью практических приложений распознавания образов, так и с нашим пониманием механизма восприятия объекта человеком. Действительно, мы полагаем, что при наблюдении (измерении) объекта человеком, сведения о нем поступают по конечному числу сенсоров (анализируемых каналов) в мозг, и каждому сенсору можно сопоставить соответствующую характеристику объекта. Помимо признаков, соответствующих нашим измерениям объекта, существует так же выделенный признак, либо группа признаков, которые мы называем классифицирующими признаками, и в выяснении их значений при заданном векторе Х и состоит задача, которую выполняют естественные и искусственные распознающие системы.
Понятно, что для того, чтобы установить значения этих признаков, необходимо иметь информацию о том, как связаны известные признаки с классифицирующими. Информация об этой связи задается в форме прецедентов, то есть множества описаний объектов с известными значениями классифицирующих признаков. И по этой прецедентной информации и требуется построить решающее правило, которое будет ставить произвольному описанию объекта значения его классифицирующих признаков.
Такое понимание задачи распознавания образов утвердилось в науке начиная с 50-х годов прошлого века. И тогда же было замечено что такая постановка вовсе не является новой. С подобной формулировкой сталкивались и уже существовали вполне не плохо зарекомендовавшие себя методы статистического анализа данных, которые активно использовались для многих практических задач, таких как например, техническая диагностика. Поэтому первые шаги распознавания образов прошли под знаком статистического подхода, который и диктовал основную проблематику [8, c. 176].
Статистический подход основывается на идее, что исходное пространство объектов представляет собой вероятностное пространство, а признаки (характеристики) объектов являют собой случайные величины заданные на нем. Тогда задача исследователя данных состояла в том, чтобы из некоторых соображений выдвинуть статистическую гипотезу о распределении признаков, а точнее о зависимости классифицирующих признаков от остальных. Статистическая гипотеза, как правило, представляла собой параметрически заданное множество функций распределения признаков. Типичной и классической статистической гипотезой является гипотеза о нормальности этого распределения (разновидностей таких гипотез статистики придумали великое множество). После формулировки гипотезы оставалось проверить эту гипотезу на прецедентных данных. Это проверка состояла в выборе некоторого распределения из первоначально заданного множества распределений (параметра гипотезы о распределении) и оценки надежности(доверительного интервала) этого выбора. Собственно эта функция распределения и была ответом к задаче, только объект классифицировался уже не однозначно, но с некоторыми вероятностями принадлежности к классам. Статистиками были разработано так же и ассимптотическое обоснование таких методов. Такие обоснования делались по следующей схеме: устанавливался некоторый функционал качества выбора распределения (доверительный интервал) и показывалось, что при увеличении числа прецедентов, наш выбор с вероятностью стремящейся к 1 становился верным в смысле этого функционала (доверительный интервал стремился к 0). Забегая вперед скажем, что статистический взгляд на проблему распознавания оказался весьма плодотворным не только в смысле разработанных алгоритмов (в число которых входят методы кластерного, дискриминантного анализов, непараметрическая регрессия и т.д.), но и привел впоследствии Вапника к созданию глубокой статистической теории распознавания [2, c. 7].
Тем не менее существует серьезная аргументация в пользу того, что задачи распознавания образов не сводятся к статистике. Любую такую задачу, в принципе, можно рассматривать со статистической точки зрения и результаты ее решения могут интерпретироваться статистически. Для этого необходимо лишь предположить, что пространство объектов задачи является вероятностным. Но с точки зрения инструментализма, критерием удачности статистической интерпретации некоторого метода распознавания может служить лишь наличие обоснавания этого метода на языке статистики как раздела математики. Под обоснаванием здесь понимается выработка основных требований к задаче которые обеспечивают успех в применении этого метода. Однако на данный момент для большей части методов распознавания, в том числе и для тех, которые напрямую возникли в рамках статистического подхода, подобных удовлетворительных обоснований не найдено. Кроме этого, наиболее часто применяемые на данный момент статистические алгоритмы, типа линейного дискриминанта Фишера, парзеновского окна, EM-алгоритма, метода ближайших соседей, не говоря уже о байесовских сетях доверия, имеют сильно выраженный эвристический характер и могут иметь интерпретации отличные от статистических. И наконец, ко всему вышесказанному следует добавить, что помимо асимптотического поведения методов распознавания, которое и является основным вопросом статистики, практика распознавания ставит вопросы вычислительной и структурной сложности методов, которые выводят далеко за рамки одной лишь теории вероятностей.
Итого, вопреки стремлениям статистиков рассматривать распознавание образов как раздел статистики, в практику и идеологию распознавания входили совершенно другие идеи. Одна из них была вызвана исследованиями в области распознавания зрительных образов и основана на следующей аналогии [2, c. 20].
Как уже отмечалось, в повседневной жизни люди постоянно решают (зачастую бессознательно) проблемы распознавания различных ситуаций, слуховых и зрительных образов. Подобная способность для ЭВМ представляет собой в лучшем случае дело будущего. Отсюда некоторыми пионерами распознавания образов был сделан вывод, что решение этих проблем на ЭВМ должно в общих чертах моделировать процессы человеческого мышления. Наиболее известной попыткой подойти к проблеме с этой стороны было знаменитое исследование Ф. Розенблатта по перцептронам [8, c. 183].
К середине 50-х годов казалось, что нейрофизиологами были поняты физические принципы работы мозга (в книге "Новый Разум Короля" знаменитый британский физик-теоретик Р. Пенроуз интересно ставит под сомнение нейросетевую модель мозга, обосновывая существенную роль в его функционировании квантово-механических эффектов; хотя, впрочем, эта модель подвергалась сомнению с самого начала. Отталкиваясь от этих открытий Ф.Розенблатт разработал модель обучения распознаванию зрительных образов, названную им персептроном. Персептрон Розенблатта представляет собой следующую функцию (рис. 1) [6, c. 41]:
Рис 1. Схема Персептрона
На входе персептрон получает вектор объекта, который в работах Розенблатта представлял собой бинарный вектор, показывавший какой из пикселов экрана зачернен изображением а какой нет. Далее каждый из признаков подается на вход нейрона, действие которого представляет собой простое умножение на некоторый вес нейрона. Результаты подаются на последний нейрон, который их складывает и общую сумму сравнивает с некоторым порогом. В зависимости от результатов сравнения входной объект Х признается нужным образом либо нет. Тогда задача обучения распознаванию образов состояла в таком подборе весов нейронов и значения порога, чтобы персептрон давал на прецедентных зрительных образах правильные ответы. Розенблатт полагал, что получившаяся функция будет неплохо распознавать нужный зрительный образ даже если входного объекта и не было среди прецедентов. Из бионических соображений им так же был придуман и метод подбора весов и порога, на котором останавливаться мы не будем. Скажем лишь, что его подход оказался успешным в ряде задач распознавания и породил собой целое направление исследований алгоритмов обучения основанных на нейронных сетях, частным случаем которых и является персептрон [6, c. 147].
Далее были придуманы различные обобщения персептрона, функция нейронов была усложнена: нейроны теперь могли не только умножать входные числа или складывать их и сравнивать результат с порогами, но применять по отношению к ним более сложные функции. На рисунке 2 изображено одно из подобных усложнений нейрона:
Рис. 2 Схема нейронной сети.
Кроме того топология нейронной сети могла быть значительно сложнее той, что рассматривал Розенблатт, например такой:
Рис. 3. Схема нейронной сети Розенблатта.
Усложнения приводили к увеличению числа настраиваемых параметров при обучении, но при этом увеличивали возможность настраиваться на очень сложные закономерности. Исследования в этой области сейчас идут по двум тесно связанным направлениям - изучаются и различные топологии сетей и различные методы настроек.
Нейронные сети на данный момент являются не только инструментом решения задач распознавания образов, но получили применение в исследованиях по ассоциативной памяти, сжатию изображений. Хотя это направление исследований и пересекается сильно с проблематикой распознавания образов, но представляет собой отдельный раздел кибернетики. Для распознавателя на данный момент, нейронные сети не более чем очень специфически определенное, параметрически заданное множество отображений, которое в этом смысле не имеет каких-либо существенных преимуществ над многими другим подобными моделями обучения которые далее будут кратко перечислены.
В связи с данной оценкой роли нейронных сетей для собственно распознавания (то есть не для бионики, для которой они имеют первостепенное значение уже сейчас) хотелось бы отметить следующее: нейронные сети, будучи чрезвычайно сложным объектом для математического анализа, при грамотном их использовании, позволяют находить весьма нетривиальные законы в данных. Их трудность для анализа, в общем случае, объясняется их сложной структурой и как следствие, практически неисчерпаемыми возможностями для обобщения самых различных закономерностей. Но эти достоинства, как это часто и бывает, являются источником потенциальных ошибок, возможности переобучения. Как будет рассказано далее, подобный двоякий взгляд на перспективы всякой модели обучения является одним из принципов машинного обучения [6, c.163].
Еще одним популярным направлением в распознавании являются логические правила и деревья решений. В сравнении с вышеупомянутыми методами распознавания эти методы наиболее активно используют идею выражения наших знаний о предметной области в виде, вероятно самых естественных (на сознательном уровне) структур - логических правил. Под элементарным логическим правилом подразумевается высказывание типа «если неклассифицируемые признаки находятся в соотношении X то классифицируемые находятся в соотношении Y». Примером такого правила в медицинской диагностике служит следующее: если возраст пациента выше 60 лет и ранее он перенёс инфаркт, то операцию не делать - риск отрицательного исхода велик [2, c. 43].
Для поиска логических правил в данных необходимы 2 вещи: определить меру «информативности» правила и пространство правил. И задача поиска правил после этого превращается в задачу полного либо частичного перебора в пространстве правил с целью нахождения наиболее информативных из них. Определение информативности может быть введено самыми различными способами и мы не будем останавливаться на этом, считая что это тоже некоторый параметр модели. Пространство же поиска определяется стандартно.
После нахождения достаточно информативных правил наступает фаза «сборки» правил в конечный классификатор. Не обсуждая глубоко проблемы которые здесь возникают (а их возникает немалое количество) перечислим 2 основных способа «сборки». Первый тип - линейный список. Второй тип – взвешенное голосование, когда каждому правилу ставится в соответствие некоторый вес, и объект относится классификатором к тому классу за который проголосовало наибольшее количество правил.
В действительности, этап построения правил и этап «сборки» выполняются сообща и, при построении взвешенного голосования либо списка, поиск правил на частях прецедентных данных вызывается снова и снова, чтобы обеспечить лучшее согласование данных и модели [4, c. 142].