Реферат: Изменение химического состава подземных вод в ограниченных карбонатных структурах при окислении пирита покровных отложений
Результаты водно-физических и гранулометрических исследований использовались при анализе структуры порового пространства пород покровных отложений. В ходе химического анализа, определялись различные формы серы, углерода, железа. Общее содержание серы определялось объемным методом с чувствительностью 0.008 % от сухого веса породы. Минералогический полуколичественный анализ выполнялся с целью установления характерных размеров зерен пирита и их содержания в породе. Определение минералов выполнялось в классах частиц крупности: > 0.05 мм; от 0.01 до 0.05 мм; < 0.01 мм. Для оценки преобразования продуктов окисления пирита в покровных отложениях выполнялся анализ водных вытяжек в соответствии с ГОСТ 26423-85 (423-428).
Структура порового пространства покровных отложений
Покровные отложения в пределах Полдневского месторождения подземных вод (как и на месторождениях - аналогах) представлены толщей переслаивающихся песчано-глинистых отложений. Преобладают глины, суглинки и супеси. Редкие песчаные прослои представлены глинистыми песками. Глинистые покровные отложения характеризуются ярко выраженной гетерогенностью порового пространства. Для схематизации миграционной среды покровных отложений, всю пористость целесообразно разбить на три типа: 1) Соответствующая гравитационной водоотдаче, обеспечивает конвективный перенос вещества в зоне полного водонасыщения и заполнена воздухом в зоне аэрации. 2) Соответствующая максимальной молекулярной влагоемкости, участвует в диффузионном переносе. 3) Закрытая или изолированная - характеризует объем изолированных пор, которые не могут участвовать ни в конвективном, ни в диффузионном массопереносе.
По результатам проведенных исследований на Полдневском месторождении общая пористость составляет в среднем 0,39 (от 0,30 до 0,53), из них около 0,03 (от 0,00 до 0,14) доступно для конвективного переноса и 0,20 (от 0,10 до 0,31) - для диффузионного, а 0,16 (от 0,12 до 0,21) приходится на закрытую пористость.
Пирит в покровных отложениях Полдневского месторождения
По результатам химического анализа фиксируется полное отсутствие серы (и сульфидной и сульфатной) в верхних частях разреза. Даже ниже естественных отметок уровня подземных вод сульфиды до некоторой глубины также могут отсутствовать в связи с формированием зоны окисления кислородных вод. В среднем на Полдневском месторождении бессульфидная зона, сформированная за длительное геологическое время, имеет мощность 10-15 м от поверхности земли. Исключение составляет тело внутреннего отвала (скважина 6тн), где в процессе отвалообразования на поверхности земли оказались пиритосодержащие породы.
Изучение распределения зерен пирита по классам различной крупности выполнялось минералогическим полуколичественным анализом. Первичный пирит, образовавшийся при бактериальной редукции морского сульфата (ранний диагенез), наблюдается преимущественно в виде тонкозернистой вкрапленности (0.005-0.02 мм). Пирит, переотложенный при позднем диагенезе, характеризуются крупнозернистой вкрапленностью с размером зерен 0.1-0.2 мм. Псевдоморфозы пирита по органическим остаткам или сростки с другими минералами могут иметь размеры около 1 мм и более. Таким образом, зерна и агрегаты пирита группируются в три группы с характерными размерами, что дало возможность расчета площади поверхности пирита в единичном объеме породы - параметра скорости окисления пирита. Удельная площадь поверхности пирита (S, м2/м3) меняется в довольно широком диапазоне: от 2 до 12000 м2/м3, прямо пропорциональна его содержанию в породе (N, моль/м3): S=13N.
Глава 3. Окисление пирита в зоне аэрации
Кинетика реакции окисления пирита
Кинетика окисления пирита изучалась многими авторами (Apello, Postma, 1996; Nicholson, Gilham, Reardon, 1988, 1990; Arkesteyn, 1980; McKibben, Barnes, 1986; Wehrli, 1990; Акинфиев и др., 2001; Peiffer, Stubert, 1999).
Покровные отложения характеризуются нейтральной реакцией среды, которая может поддерживаться длительное время и в процессе окисления пирита, что связано с наличием карбонатной составляющей пород.
Кинетика окисления пирита в буферизированном карбонатом растворе исследовалась в лабораторных условиях (Nicholson, Gilham, Reardon, 1988). В нейтральной среде пирит окисляется исключительно кислородом, поскольку концентрация трехвалентного железа ничтожно мала в результате выпадения гидроокиси в осадок. Скорость окисления оказалась прямо пропорциональна площади поверхности пирита и концентрации молекул кислорода адсорбированных на ней.
Эксперименты продолжительностью около 13 месяцев (Nicholson, Gilham, Reardon, 1990) показали сильное уменьшение скорости окисления пирита со временем, связанное с образованием на его поверхности ингибирующей пленки представленной в основном лепидокрокитом (γ-FeOOH). Коэффициент диффузии кислорода через пленку (D) оценен на уровне 2.6.10-11 м2/сут (на 6 порядков ниже коэффициента диффузии кислорода в воде). Огромное диффузионное сопротивление ингибирующей пленки приводит к тому, что уже через несколько недель интенсивность окисления пирита лимитируется преимущественно диффузионным переносом через пленку и практически не зависит от скорости реакции на поверхности пирита. Правомерность пренебрежения кинетикой реакции на поверхности пирита в условиях нейтральной среды подтверждается экспериментальными данными (рис.2). Имеются опубликованные данные по экспериментальному окислению песчаных отложений Нидерландов (Hartog, Griffioen, 2002). Теоретическая кривая, пренебрегающая кинетикой реакции, полностью совпадает с результатами эксперимента при условии нулевой толщины пленки в начале опыта.
Теоретически пирит даже в зоне полного водонасыщения может иметь ингибирующую пленку, которая могла образоваться за счет окисления пирита инфильтрационными водами, содержащими растворенный кислород. При этом должна существовать переходная зона между полностью окисленным пиритом и пиритом не подвергшемся окислению. В этой зоне толщина пленки должна меняться от нуля до полного радиуса зерна. Размер переходной зоны устанавливался путем моделирования одномерного потока (трубки тока) с учетом конвективного переноса растворенного кислорода и его поглощения на окисление пирита. Для моделирования использовались алгоритм и программа PYROXID проф. А.В. Лехова. Основной вывод из рассмотренной задачи - размер переходной зоны между породами лишенными пирита и содержащими пирит исчисляется долями метра. То есть в естественных условиях пирит преимущественно либо полностью окислен, либо еще не подвергался окислению.
Движение атмосферного кислорода к зернам пирита
В условиях интенсивного окисления пирита ограничивающим фактором может являться затрудненное поступление кислорода в зону аэрации из атмосферы. Газообмен между атмосферой и зоной аэрации осуществляется преимущественно за счет диффузии. Коэффициент диффузии кислорода в воздухе (D0) при общем атмосферном давлении и температуре около 10oС равен 0.18 см2/сек или 1.55 м2/сут. Коэффициент диффузии в воздухе пористой среды (Dв) рассчитывается по формуле Dв = D0nвφ, где φ - коэффициент извилистости, а nв - открытая для воздуха пористость.
Экспериментальное изучение диффузии газов в породах предпринималось в основном в связи с проблемами <газовой> съемки и проблемами аэрации почв. Все эти исследования показали, что для одной и той же горной породы с увеличением влажности коэффициент диффузии резко падает, причем быстрее, чем уменьшается объем порового пространства, открытого для воздуха (рис. 3). При максимальном водонасыщении породы расчетный коэффициент извилистости составляет порядка 0,1 (максимальная извилистость), а в сухой породе доходит до 0,6 (минимальная извилистость).
Объемная доля воздуха в супесчано-суглинистых породах Полдневского месторождения, определенная с использованием зависимости Аверьянова, составляет около 1-8 % в зависимости от величины инфильтрационного питания. Коэффициент диффузии кислорода в данных породах имеет порядок 10-3-10-2 м2/сут (при коэффициенте извилистости 0,1).
Преобразование продуктов окисления пирита в покровных отложениях
Основными непосредственными подвижными продуктами реакции окисления пирита являются ионы SO42-, H+, Fe2+. Серная кислота нейтрализуется преимущественно кальцитом, слагающим карбонатный цемент и в результате реакций ионного обмена H+ на Ca2+ или другие катионы. Кларковые концентрации карбонатов в покровных отложениях способны полностью нейтрализовать кислоту, образующуюся в результате окисления пирита. Это подтверждается результатами водных вытяжек из пород зоны окисления покровных отложений на Полдневском месторождении, где поровые растворы имеют нейтральную реакцию (рН 6-8). Нейтральная среда способствует осаждению гидроокисей железа.
Основным механизмом вывода из раствора сульфат иона является осаждение гипса. Рост концентрации кальция в процессе нейтрализации кислотности приводит в конечном итоге к пересыщению раствора по гипсу и его выпадению. Насыщение по гипсу не будет достигаться только в том случае, когда интенсивность промывки зоны аэрации инфильтрационными водами выше интенсивности образования сульфат иона в процессе окисления пирита.
Зона окисления на Полдневском месторождении
Судить о развитии зоны окисления на Полдневском месторождении можно по результатам анализов водных вытяжек из монолитов, отобранных при поинтервальном опробовании скважин 7н, 2г' и 6тн. Результаты водных вытяжек показали, что нейтрализация кислотности происходит уже в зоне окисления, а поступающий при этом в раствор ион кальция связывает значительную часть сульфат иона в результате осаждения гипса.
В скважине 7н загипсованные породы вскрыты на глубине 11-13.2 м, при уровне залегания грунтовых вод 15.1 м. Интервал загипсованных пород находится в зоне окисления, сформированной в результате снижения уровня грунтовых вод. В скважине 2г породы содержащие пирит залегают на глубине ниже современного уровня грунтовых вод, поэтому зона окисления отсутствует. В теле внутреннего отвала (скв. 6тн) загипсованные породы залегают как выше, так и ниже уровня грунтовых вод, т. к. в отвал складировались уже окисленные и загипсованные породы. Процесс вскрытия, выемки, перемещения и складирования горных пород занимал значительный промежуток времени, в течение которого порода находилась в непосредственном контакте с атмосферой (месяцы, годы). Этого было достаточно для окисления и загипсования пород. Анализ воды из скважины 6тн показывает, что она также характеризуется состоянием насыщения по гипсу (концентрация SO4 составляет 1370 мг/л).
Глава 4. Моделирование окисления пирита в зоне аэрации
Для изучения процесса окисления дисперсного пирита в зоне аэрации применялось математическое моделирование в программе PYROXID. Данная программа позволяет рассматривать процесс пирита окисления в новообразованной зоне аэрации.
Перед моделированием ставились следующие задачи: 1) Оценить интенсивность окисления пирита и выноса сульфатов в возможном диапазоне изменения параметров. 2) Оценить степень влияния каждого параметра на интенсивность окисления.
Для моделирования использовались три типовые схемы: 1) Естественное залегание - пирит на глубине 5 м. 2) Естественное залегание - пирит на глубине 15 м. 3) Отвал (на поверхности земли). Высота отвала 10 м.
Коэффициент диффузии кислорода через породы зоны аэрации задавался равным 10-2 м/сут.
Радиус зерен пирита определялся крайними значениями вероятного диапазона от 20 мкм до 50 мкм.
Концентрация пирита в породах также задавалась крайними значениями от 0,2 кларков (16 моль/м3) до 1 кларка (80 моль/м3).
С учетом этого общее число модельных вариантов составило 12 (по числу комбинаций модельных схем и изменяемых параметров). Моделирование по каждому варианту производилось на срок 250 лет. На рисунке 4 в качестве примера приводятся профили изменения содержания гипса, пирита, кислорода и интенсивность окисления пирита на характерные моменты времени для одной из типовых схем.
По результатам моделирования можно сделать следующие выводы: 1) При глубине залегания пиритсодержащих пород более 10 м интенсивность окисления перестает зависеть от концентрации пирита и размеров его зерен (в заданном диапазоне). Интенсивность окисления лимитируется диффузией кислорода через толщу пород. 2) При малых глубинах залегания интенсивность окисления сильно зависит от площади поверхности пирита, то есть от его концентрации и размера зерен. Интенсивность окисления лимитируется диффузией через ингибирующую пленку. 3) Глубина, на которой лимитирующие стадии выравниваются, сильно зависит от коэффициента диффузии кислорода. При коэффициенте диффузии кислорода 10-3 м/сут глубина будет значительно меньше 10 м. 4) При значительной скорости окисления пирита интенсивность выноса сульфатов практически не зависит от концентрации пирита и размера его зерен. Концентрация сульфатов ограничивается растворимостью гипса.
Глава 5. Прогноз изменения химического состава воды на водозаборах