Реферат: Измеритель отношения сигнал/шум ТВ канала

Отечественным аналогом разрабатываемого модуля измерения ОСШ является прибор ИСШ-4. Структурная схема измерителя ИСШ-4 состоит из аналоговой измерительной части (блоки усиления и модуляции), цифровой измерительной части (блок автоматической регулировки усиления, арифметический блок , буферный счетчик, блок дешифраторов) и вспомогательной части (блок управления, блок выделения синхросигнала ,блок синхронизации). Структурная схема модуля измерения ОСШ изображена на рисунке 4.1.

Функциональная схема модуля измерения ОСШ изображена на рисунке 4.2.

Видеосигнал (рис. 4.3 а) со входа измерителя “Вход видео” поступает на входные каскады 1, где усиливается до требуемого для подачи на блок фильтра 11 уровня. С выхода блока фильтра 11 видеосигнал, отфильтрованный в требуемой полосе частот поступает на вход усилителя с регулируемым коэффициентом передачи 2, на выходе которого размах видеосигнала поддерживается постоянным и равным эталонной величине Во . Импульсный сигнал управления коэффициентом передачи усилителя 2 “Сигнал АРУ” формируется цифровым устройством АРУ 8 блока автоматической регулировки усиления в результате сравнения видеосигнала “Видео сравн.” с выхода усилителя 2 с эталонным напряжением Во . Автоматическое поддержание постоянным размаха видеосигнала входе измерительного тракта заменяет собой измерение размаха видеосигнала. При этом измерение отношения сигнал/шум сводиться к измерению величины шума, и алгоритм (3.1) преобразуется в алгоритм (3.2).

Видеосигнал, размах которого между уровнями гашения и белого (или черного и белого) равен величине Во, поступает через потенциометр оперативной калибровки “Калибр” на один вход строб-схемы 3. На другой вод схемы 3 с выхода формирователя поступают строб-импульсы (рис.3г), частота повторения которых - 25Гц, а длительность - примерно 4 мкс. Местоположение строб-импульсов можно менять вручную в пределах всего растра. Строб-импульсы подаются также на вход схемы замешивания метки 25 селектора, где суммируются с видесигналом. С выхода схемы 25 видеосигнал поступает на коаксиальное гнездо “Видео ВКУ”, к которому подключается видеоконтрольное устройство (ВКУ). Замешанный в видеосигнал строб-импульс индицируется на экране ВКУ в виде яркостной метки, по положению которой на растре определяют участок изображения, выбранный для измерения на нем уровня шума. Этот участок изображения должен иметь постоянную яркость на всем протяжении яркостной метки, а соответствующий участок видеосигнала - неизменный размах во временном интервале строб-импульса. На выходе схемы 3 в интервале строб-импульса выделяется сигнал, представляющий собой пьедестал, размах которого пропорционален размаху видеосигнала в интервале стробирования, с наложенным на него шумом (рис.4.3д). Пьедестал с наложенным на него шумом подается на усилитель 4, на входе которого происходит автокомпенсация пьедестала. Стробирование видеосигнала с последующей автокомпенсацией пьедестала, т.е. с устранением информации о видеосигнале, позволяет выделить шум из видеосигнала, а также использовать линейную часть динамической характеристики каскадов 4 и 6 целиком для обработки шума.

Обработка пакета шума на выходе усилителя 4 с целью определения эффективной величины шума в формуле (3.2) осуществляется с помощью стробоскопического метода, суть которого состоит в выборке мгновенных некоррелированных значений шума с частотой повторения сигнала и в запоминании выбранных значений на время между выборками. Таким образом, период выборки должен быть равен периоду повторения кадров, длительность интервала выборки должна быть менее длительности элемента изображения. Возможность использования стробоскопического метода основана на том, что шум является эргодическим стационарным случайным процессом, а статические характеристики (среднее значение и дисперсия) такого случайного процесса, полученные в результате усреднения его во времени на отрезке реализации, совпадают с полученными в результате усреднения по совокупности его выборочных мгновенных значений.

Выборка мгновенных некоррелированных значений шума и запоминание их на время между выборками производится следующим образом. Пакеты усиленного шума (рис.4.3е) с выхода каскада 4 поступают на один вход амплитудно-импульсного модулятора (АИМ) 6, на другой его вход поступают импульсы выборки с выхода формирователя 5 (рис 4.3ж). Частота повторения импульсов выборки - 25Гц., а длительность на уровне амплитуды - приблизительно 20нс. Формирователь 5 запускается строб-импульсами с выхода формирователя 7 и обеспечивает положение импульса выборки посередине временного интервала строб-импульса.

На выходе АИМ образуются импульсы, модулированные по амплитуде шумом (рис.3 з), т.е. размах каждого из этих импульсов Uк пропорционален мгновенной величине шума в момент выборки

Uk Uш.р-р

где k=1....n, n - число выборок мгновенных значений некоррелированных значений за цикл измерения.

Модулированные шумом импульсы поступают на пиковый детектор 7, который осуществляет “запоминание” размаха каждого очередного импульса до прихода последующего, т.е. в момент прихода k-го импульса на выходе пикового детектора формируется напряжение Uk , а предыдущее напряжение принудительно сбрасывается (рис.4.3и; рис.4.4б). В момент прихода (к+1)-ого импульса сбрасывается напряжение Uk и формируется Uk+1 .

Таким образом, на выходе детектора 7 формируется преобразованный шум - дискретный случайный процесс, име-ющий те же статистические характеристики (среднее значение и дисперсию), что и шум на входе измерителя.

Дальнейшее измерение эффективной величины шума производится в соответствии с алгоритмом (3.3), при использовании которого нет необходимости производить, как промежуточную операцию, определение среднего значения, или центрирование, преобразованного шума. Алгоритм измерения ОСШ (3.2) принимается с учетом алгоритма (3.3) вид (3.4).

Операция вычитания, возведения в квадрат, суммирование и логарифмирование в последовательности, определенной алгоритмом (3.4), осуществляют цифровые блоки измерителя. Предварительную трансформацию преобразованного шума в цифровой код производят широтно-импульсный модулятор 10, расположенный в блоке автоматической регулировки усиления, и преобразователь длительность-код 12, расположенный на плате вычитателя и квадратора арифметического блока.

Широтно-импульсный модулятор запускается строб-импульсами с выхода формирователя 9. На выходе модулятора 10 образуется широтно-модулированные импульсы (рис.4.4в), длительность которых пропорциональна размаху преобразованного шума в момент запуска модулятора 10, т.е.

(4.1)

где к=1....n.

Широтно-модулированные импульсы поступают на преобразователь длительность-код 12, на выходе которого формируется число-импульсный код шума, представляющий со-


бой пачки (рис.4.4г), число импульсов в которых Nk пропорционально величинам, т.е.

с учетом (4.1)

где К - коэффициент преобразования аналог-код.

После преобразования аналог-код алгоритм (3.4) принимает вид :

где

На выходе вычитателя 13 формируется число-импульсный код разности двух соседних кодов шума (рис.4.4д), т.е. пачки, число импульсов в которых Nk определяется в соответствии с выражением (4.2) :

(4.2)

где к=1....n.

Квадратор 14 производит возведение в квадрат число-импульсных кодов разностей, поступающих на его вход с выхода вычитателя 13. На входе квадратора 14 формируются пачки (рис.4.4е), число импульсов в которых Nk определяется в соответствии с выражением (4.3):

(4.3)

К-во Просмотров: 343
Бесплатно скачать Реферат: Измеритель отношения сигнал/шум ТВ канала