Реферат: Изучение кластеров и их свойств в области химии

Заряженные кластеры в газовой среде генерируют посредством электрического разряда или (ныне все чаще) путем воздействия ионизирующих излучений. Различные излучения используют для создания заряженных кластеров и в газах, и в. конденсированных средах. Ионная бомбардировка поверхности твердых тел позволяет получать также и заряженные, и нейтральные кластеры в паровой фазе обычно в сверхравновесных концентрациях.

Экспериментальные трудности исследования свободных кластеров в неравновесных системах усугубляются практической невозможностью получения кластеров одного размера. Поэтому измеряемые величины часто представляют результат усреднения, при котором возможно «замазывание» немонотонных зависимостей свойство - число частиц в кластере.

Наиболее распространенным и наиболее прямым методом наблюдения кластеров в газовой фазе является в настоящее время масс-спектрометрия. Предложено много вариантов систем напуска, обеспечивающих доставку кластеров из зоны, где они образовались, в ионный источник спектрометра. С этой стороной техники дело обстоит достаточно удовлетворительно. Важно также уменьшить разрушение кластеров в ионном источнике под влиянием ионизирующего излучения. Традиционные приборы, в которых ионизация объекта достигается электронным ударом, в этом отношении малоудачны; эффективнее фотоионизационные источники, хотя и в этом случае первоначальные концентрации кластеров могут искажаться. Разумеется, степень искажения сильно зависит от прочности кластера, а также от продолжительности промежутка времени между ионизацией и регистрацией иона. («Времяпролетная» масс-спектрометрия в этом смысле предпочтительнее.)

Для характеристики ионных кластеров в газах масс-спектрометрия также весьма эффективна, но здесь распространен и другой метод-измерение подвижности ионов. В 70-х годах для исследования свободных кластеров, возникающих в сверхзвуковых газовых струях, был применен метод дифракции электронов; удалось регистрировать дифракционную картину от кластеров аргона из ~50 атомов с возрастом ~2-10~4 с.

Перспективна и оптическая спектроскопия кластерных пучков: их низкая температура сильно упрощает картину спектра и делает возможным его анализ.

В исследованиях поверхностных кластеров эффективна автоионная микроскопия и фотоэлектронная спектроскопия.

В последнее время приобретают значение новые спектроскопические методы изучения вещества - измерения рентгено- и фотоэлектронных спектров, но в исследованиях свободных кластеров их еще не применяли, тем более что анализ полученных данных здесь сложен и неоднозначен. По-видимому, наиболее информативными станут комплексные методы, сочетающие масс-спектрометрию, в особенности времяпролетную масс-спектрометрию высокого разрешения, со спектральными методами разных диапазонов частот. В частности, большой интерес представляет лазерная спектроскопия комбинационного рассеяния света. Этот метод эффективен для измерения низких частот колебаний, характерных для связей между частицами в кластерах. Еще важнее, что он может обеспечить весьма быструю, до времен порядка 10~8 с, регистрацию спектров, а значит, исследование короткоживущих кластеров.

Вторая большая категория методов исследования - расчетно-теоретическая.

Компьютерная техника оказывается «математическим микроскопом», а иногда и сверхскоростной кинокамерой или даже и тем и другим, словом, инструментом, который позволяет наблюдать быстрые превращения кластеров.

Ценность машинных методов тем выше, чем труднее объект для прямого экспериментального изучения; таковы в особенности свободные кластеры из нескольких десятков частиц.

Расчетно-теоретические методы исследования следует подразделить по уровню детализации на молекулярно-физические и квантовомеханические. Методы, опирающиеся на идеи молекулярной физики, состоят в машинном анализе поведения кластера как системы N частиц, взаимодействие между которыми описывается некоторым потенциалом (например, потенциалом Лен нарда-Джонса). В квантово-механических методах кластер рассматривается как молекула; при тех или иных допущениях исследуются взаимодействия электронов в этой системе. Расчет свойства кластеров на основе представлений молекулярной физики был начат в связи с необходимостью определения термодинамических характеристик малых зародышей в теории конденсации: совершенно очевидно, что «капиллярное приближение» классической теории конденсации, основанное на использовании величины поверхностной энергии малых капель, непригодно для частиц из ~ 10 атомов. Первая работа в этом направлении (в ней были рассмотрены кластеры максимум из восьми частиц) относится к 1952 году. В такого рода вычислениях и время счета, и необходимый объем машинной памяти возрастают пропорционально кубу числа атомов в кластере, поэтому исследования более крупных кластеров начались много позже, примерно через полтора десятилетия, когда возможности вычислительной техники стали достаточными, а решаемые задачи - еще более актуальными (к общим потребностям развития теории конденсации добавились запросы со стороны технологии получения конденсированных пленок, в особенности в технике полупроводников и электронике). Со второй половины 60-х годов начинается разработка специальных расчетных методов для исследования свойств кластеров на основе представлений молекулярной физики.

Ныне распространен метод молекулярной динамики и метод Монте-Карло.

Сущность метода молекулярной динамики заключается в машинном решении уравнений движения системы из заданного числа частиц. Уравнения движения Ньютона связывают между собой координаты, скорость и энергию частицы; их интегрирование дает координаты и скорости всех частиц кластера в функции от времени. Свойства кластера находят, усредняя эти данные. Применение метода Монте-Карло опирается на эргодическую гипотезу статистической механики о возможности представления временной последовательности случайных конфигураций динамической системы мгновенным состоянием статистического ансамбля. В соответствии с этим принцип расчета состоит в усреднении по ансамблю случайных конфигураций, вероятность каждой из которых зависит от ее энергии экспоненциально.

Общим для обоих методов является вопрос о потенциале UN, описывающем взаимодействие N частиц в кластере. Вообще говоря, этот потенциал есть функция Хх.., X;.., Xv, где X; - ряд чисел, описывающих положение центра и ориентацию t'-й молекулы. Достаточно обоснованной является аппроксимация UN суммой потенциальных энергий парных взаимодействий X,).

Формы и параметры потенциала Utj могут быть различными; часто заменяют X;, X] просто на межмолекулярное расстояние rtj. Наиболее популярны (в силу простоты и удобства) потенциалы Леннарда-Джонса (обычно т=6, п=12) и потенциал Морзе. В случае многоатомных частиц, образующих кластер, выражения усложняются, так как необходим учет ориентации. Так, для молекул воды предложено несколько потенциальных функций; одной из наиболее простых и удачных является потенциал U (X;, Xj^Ut (rtJ) + S (rti) UEL (Х„ X,-), (4) где UEL - потенциал взаимодействия двух массивов заряда (отражающих распределение зарядов в молекуле воды), который учитывает водородные связи между молекулами. Все эти формулы являются эмпирическими; их параметры определяют по свойствам соответствующих веществ.

Методы молекулярной динамики и Монте-Карло дают сведения прежде всего о термодинамических характеристиках кластеров, а отчасти и об эволюции структуры (взаимного расположения частиц) кластера во времени.

Результаты большинства машинных исследований термодинамических свойств кластеров относятся не к реальным, а к гипотетическим объектам, например к кластерам из частиц, которые взаимодействуют между собой, согласно потенциалу Леннарда-Джонса, или к чисто «кулонов-ским» кластерам и т.д. Поэтому не удивительно, что при исследовании энергетических характеристик кластеров разными методами получаются существенно различные результаты в отношении величины избыточной энергии и ее зависимости от числа атомов. Однако многие выводы, полученные 'для таких условных моделей, имеют общее значение и дают важные сведения о свойствах кластеров.

Более глубокий уровень детализации связан с применением квантовой механики.

Методы расчета кластеров были созданы в ходе развития теории химической связи; долгое время (до конца 60-х годов) объектами приложения этих методов были не кластеры, а обыкновенные молекулы. К квантовомеханическим расчетам кластеров приступили специалисты, шедшие с двух сторон: одни занимались многоядерными металлоорганическими неорганическими комплексами, другие исследовали кластеры в качестве моделей твердого тела.

В обоих случаях кластеры первоначально были вспомогательной моделью, переходной к изучаемой, но постепенно выяснилась общность этих объектов.

Трудности расчета многоатомных молекул и недостаточная мощность компьютеров заставляли идти на многочисленные упрощающие допущения, поэтому в 60-х годах машинные исследования кластеров в квантовой химии исчислялись единицами. Число и эффективность исследований кластеров стали быстро возрастать с 70-х годов в связи с созданием новых методов квантовохимических расчетов, в особенности так называемого метода «X-рассеянных волн», словно специально задуманного для этих целей.

Квантовомеханические расчеты кластеров дают для химика результаты двоякого рода. Во-первых, они позволяют судить об энергетике кластеров, о зависимости энергетических характеристик от расположения атомов. (Заметим еще раз, что ныне от подобных расчетов ожидают прежде всего выяснения тенденций, характера зависимости, а не абсолютных значений тех или иных величин. Правда, результаты новейших расчетов позволяют надеяться и на большее.) Такие зависимости можно сопоставлять с результатами вычислений методами молекулярной динамики и Монте-Карло, использующими те или иные эмпирические потенциалы взаимодействий между атомами. Таким образом можно получить сравнительное представление о возможностях разных расчетных методов. Работы в этом направлении уже начаты; найдено качественное согласие выводов о наиболее устойчивой структуре 13-атомных металлических кластеров.

Во-вторых, квантовомеханические расчеты дают результаты, так сказать, незаменимые, относящиеся к электронному строению кластеров. Здесь опять-таки наибольший интерес представляет тенденция - как изменяется электронная структура объекта при переходе от одиночного атома (молекулы) к кластеру, а затем к микроскопическому кристаллу.

Объектами большинства квантовохимических исследований остаются простые кластеры, образованные атомами металлов и отчасти других элементов. Рекордными являются работы по расчету 40-50-атомных кластеров. Недавно проведены также некоторые работы, относящиеся и к более сложным веществам (фтористому водороду, хлористому бериллию и др.). Начаты исследования ионов, а также сольватированных электронов.

Многочисленны расчетные квантовохимические исследования, которые имеют своим объектом кластеры не как самостоятельные объекты, а как упрощенные модели твердого тела или его поверхности.

4. Образование кластеров

Конкретные процессы, в которых возникают кластеры, столь же многообразны, как и типы кластеров. Однако это многообразие определяется скорее различиями в природе частиц и особенно в способах стабилизации кластеров. Отвлекаясь от таких «частностей», можно усмотреть лишь два общих пути образования кластеров - агрегация в кластер одиночных («мономерных») частиц или кластеров меньшего размера и дезагрегация до кластеров больших коллективов взаимодействующих частиц.

Самый наглядный и в то же время самый важный пример агрегативного пути образования кластеров - зарождение новой фазы. Это частный случай весьма общей категории процессов качественного изменения структуры; для всех таких процессов характерно первоначальное возникновение зародышей новой структуры в недрах старой. Кластерообразование и последующий рост новой фазы - интересное средство «усиления», таковы фотография, декорирование поверхностей, наблюдение элементарных частиц с помощью камер Вильсона и пузырьковых камер.

К явлениям образования кластеров в фазовых переходах близки уже упоминавшиеся предпереходные явления; здесь до возникновения новой фазы дело не доходит, и кластеры остаются как бы несостоявшимися фазами. Они-то и были названы гетерофазными флюктуациями, поскольку они находятся в динамическом равновесии с материнской фазой, т.е. непрерывно возникают и распадаются.

К-во Просмотров: 197
Бесплатно скачать Реферат: Изучение кластеров и их свойств в области химии