Реферат: Химическая организация клетки

В живой клетке углеводы находятся в количествах, не превышающих 1-2, иногда 5% (в печени, в мышцах). Наиболее богаты углеводами растительные клетки, где их содержание достигает в некоторых случаях 90% от массы сухого вещества (семена, клубни картофеля и т.д.).

Углеводы бывают простые и сложные. Простые углеводы называются моносахаридами. В зависимости от числа атомов углевода в молекуле моносахариды называются триозами, тетрозами, пентозами или гексозами. Из шестиуглеродных моносахаридов – гексоз – наиболее важное значение имеют глюкоза, фруктоза и галактоза. Глюкоза содержится в крови (0,1-0,12%). Пентозы рибоза и дезоксирибоза входят в состав нуклеиновых кислот и АТФ. Если в одной молекуле объединяются два моносахарида, такое соединение называется дисахаридом. Пищевой сахар, получаемый из тростника или сахарной свеклы, состоит из одной молекулы глюкозы и одной молекулы фруктозы, молочный сахар – из глюкозы и галактозы.

Сложные углеводы, образованные многими моносахаридами, называются полисахаридами. Мономером таких полисахаридов, как крахмал, гликоген, целлюлоза, является глюкоза.

Углеводы выполняют две основные функции: строительную и энергетическую. Целлюлоза образует стенки растительных клеток. Сложный полисахарид хитин служит главным структурным компонентом наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов. Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1г. углеводов освобождается 17,6 кДж (~4,2 ккал). Крахмал у растений и гликоген у животных откладываются в клетках и служат энергетическим резервом.

1.2.3. Нуклеиновые кислоты.

Значение нуклеиновых кислот в клетке очень велико. Особенности их химического строения обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этапе индивидуального развития. Поскольку большинство свойств и признаков клеток обусловлено белками, то понятно, что стабильность нуклеиновых кислот – важнейшее условие нормальной жизнедеятельности клеток и целых организмов. Любые изменения структуры клеток или активности физиологических процессов в них, влияя, таким образом, на жизнедеятельность. Изучение структуры нуклеиновых кислот имеет исключительно важное значение для понимания наследования признаков у организмов и закономерностей функционирования, как отдельных клеток, так и клеточных систем – тканей и органов.

Существуют 2 типа нуклеиновых кислот – ДНК и РНК.

ДНК – полимер, состоящий из двух нуклеотидных спиралей, заключенных так, что образуется двойная спираль. Мономеры молекул ДНК представляют собой нуклеотиды, состоящие из азотистого основания (аденина, тимина, гуанина или цитозина), углевода (дезоксирибозы) и остатка фосфорной кислоты. Азотистые основания в молекуле ДНК соединены между собой неодинаковым количеством Н-связей и располагаются попарно: аденин (А) всегда против тимина (Т), гуанин (Г) против цитозина (Ц). схематически расположение нуклеотидов в молекуле ДНК можно изобразить так:

Из схемы видно, что нуклеотиды соединены друг с другом не случайно, а избирательно. Способность к избирательному взаимодействию аденина с тимином и гуанина с цитозином называется комплементарностью. Комплементарное взаимодействие определенных нуклеотидов объясняется особенностями пространственного расположения атомов в их молекулах, которые позволяют им сближаться и образовывать Н-связи. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой через сахар (дезоксирибозу) и остаток фосфорной кислоты.

РНК так же, как и ДНК, представляет собой полимер, мономерами которого являются нуклеотиды. Азотистые основания трех нуклеотидов те же самые, что входят в состав ДНК (А, Г, Ц); четвертое – урацил (У) – присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК отличаются от нуклеотидов ДНК и по строению входящего в их состав углевода (рибоза вместо дизоксирибозы).

В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого.

По структуре различаются двухцепочечные РНК. Двухцепочечные РНК являются хранителями генетической информации у ряда вирусов, т.е. выполняют у них функции хромосом. Одноцепочечные РНК осуществляют перенос информации о структуре белков от хромосомы к месту их синтеза и участвуют в синтезе белков.

Существует несколько видов одноцепочечной РНК. Их названия обусловлены выполняемой функцией или местом нахождения в клетке. Большую часть РНК цитоплазмы (до 80-90%) составляет рибосомальная РНК (рРНК), содержащаяся в рибосомах. Молекулы рРНК относительно невелики и состоят в среднем из 10 нуклеотидов. Другой вид РНК (иРНК), переносящие к рибосомам информацию о последовательности аминокислот в белках, которые должны синтезироваться. Размер этих РНК зависит от длины участка ДНК, на котором они были синтезированы. Транспортные РНК выполняют несколько функций. Они доставляют аминокислоты к месту синтеза белка, "узнают" (по принципу комплементарности) триплет и РНК, соответствующий переносимой аминокислоте, осуществляют точную ориентацию аминокислоты на рибосоме.

1.2.4. Жиры и липоиды.

Жиры представляют собой соединения жирных высокомолекулярных кислот и трехатомного спирта глицерина. Жиры не растворяются в воде – они гидрофобны. В клетке всегда есть и другие сложные гидрофобные жироподобные вещества, называемые липоидами.

Одна из основных функций жиров – энергетическая. В ходе расщепления 1г. жиров до СО2 и Н2 О освобождается большое количество энергии – 38,9 кДж (~9,3 ккал). Содержание жира в клетке колеблется в пределах 5-15% от массы сухого вещества. В клетках живой ткани количество жира возрастает до 90%. Накапливаясь в клетках жировой ткани животных, в семенах и плодах растений, жир служит запасным источником энергии.

Жиры и липоиды выполняют и строительную функцию6 они входят в состав клеточных мембран. Благодаря плохой теплопроводности жир способен к защитной функции. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, образуя слой толщиной до 1м. Образование некоторых липоидов предшествует синтезу ряда гормонов. Следовательно, этим веществам присуща и функция регуляции обменных процессов.

1.3. Клеточная теория строения организмов.

Для прокариот и простейших, низших грибов и некоторых водорослей понятия "клетка" и "организм" совпадают. Можно сказать, что клетка – это элементарная биологическая система, способная к самообновлению, самовоспроизведению и развитию.

Такое представление о клетке установилось в науке не сразу. Сама клетка (точнее, клеточная оболочка) была открыта в XVII в. Английским физиком Р. Гуком. Рассматривая под микроскопом срез пробки, Гук обнаружил, что она состоит из ячеек, разделенных перегородками. Эти ячейки он назвал клетками. Долгое время главной частью клетки считали ее оболочку. Лишь в XIX в. Ученые обратили внимание на полужидкое студенистое содержимое, заполняющее клетку. В 1831 г. английский ботаник Б. Броун обнаружил в клетках ядро. Это открытие послужило важной предпосылкой для установления сходства между клетками растений и животных. Ботаник М. Шлейден доказал, что ядро есть в любой растительной клетке.

В конце 30-х гг. XIX в. зоолог Т. Шванн, обобщив накопленные сведения о строении живых организмов, пришел к заключению, что клетка – их главная структурная единица и что именно образование клеток обусловливает рост и развитие живых тканей.

Клеточная теория строения была сформулирована и опубликована Т. Шванном в 1839г. Она сыграла огромную роль в развитии биологии. Исчезла казавшаяся непроходимой пропасть между царством растений и царством животных. Провозглашая единство живого мира, клеточная теория послужила одной из предпосылок возникновения теории эволюции Ч. Дарвина.

Позднее клеточная теория была развита многими учеными. Немецкий врач Р. Вирхов доказал, что главная составная часть клетки – ядро и что клетки образуются только от клеток. Дальнейшее совершенствование микроскопической техники, создание электронного микроскопа и появление методов молекулярной биологии позволили глубже проникнуть в тайны клетки, познать ее сложную структуру и многообразие протекающих в ней биохимических процессов.

В настоящее время основные положения клеточной теории формулируются следующим образом:

1) Клетка является структурно-функцилональной единицей, а также единицей развития всех живых организмов;

2) Клеткам присуще мембранное строение;

3) Ядро – главная составная часть клетки;

4) Клетки размножаются только делением;

К-во Просмотров: 513
Бесплатно скачать Реферат: Химическая организация клетки