Реферат: Классификация лечебных физических факторов. Алгоритм функционирования и структурная компоновка аппаратного комплекса

Изложенные общие представления о механизмах действия на организм лечебных физических факторов, упрощенно отраженные на схеме (рис. 2), будут дополнены, уточнены и конкретизированы при рассмотрении в последующем каждого из методов физиотерапии.

Алгоритм функционирования и структурная компоновка аппаратного комплекса

Анализ процессов, возникающих в канале воздействия БТС электроанальгезии, показывает, что основными электрическими параметрами воздействия, определяющими, в конечном счете, эффективность обезболивания, являются: амплитуда стимулирующего тока, частота следования, длительность, частота заполнения стимулов. Вариабельность характеристик биологических тканей канала воздействия БТС определяет необходимость регулировки основных параметров воздействия, так как вия возбуждения нервных структур изменяются как в зависимости, места расположения электродов на теле пациента, так и от индивидуальных особенностей строения тканей в зоне стимуляции. Наибольший разброс параметров биологических тканей наблюдается при чрескожной передаче стимула, так как здесь на условия стимуляции оказывает дополнительное влияние такие факторы, как состояние контакта электрод-кожа, структурное строение тканей, психофизические эффекты, связанные с потоотделением, состояние периферического кровотока результаты исследования импедансов пассивных биологических тканей случаев расположения электродов на различных участках кожи пациента и при расположении электродов на одинаковом участке кожи у разных лиц показывают, что значения граничных частот, определяющие сложение спектральных составляющих адекватного стимула, могут измениться в 1,5-2 раза в зависимости от условий воздействия. Поэтому при разработке технических звеньев БТС необходимо предусматривать регулировку параметров стимула, обеспечивающую достижение адекватных условий стимуляции во всех возможных случаях использования аппаратуры. Однако большое число ручных регулировок параметров воздействия, допустимое в исследовательской аппаратуре, становится не­сообразным в медицинских БТС, функционирующих в клинических условиях и требующих максимальной простоты обслуживания. Параметры и режимы электронейростимуляции, нуждающиеся в регулировке в процессе функционирования БТС, можно разделить на две группы. Первая группа включает параметры воздействия, связанные с дозировкой лечебного эффекта. Эти параметры устанавливаются в соответствии с величиной сигнала управления БТС, зависящей от полученного значения диагностического признака. Если управление техническими звеньями БТС осуществляется со стороны медицинского персонала, то регулировку параметров первой группы целесообразно выполнить вручную. К этой группе относится, например, установка амплитуды стимулирующего тока, определяющая градиент напряжения в тканях, степень охвата необходимого количества возбуждаемых нервных проводников и, соответственно, глубину и силу достигаемого эффекта. Вторая группа параметров воздействия, в которую входит длительность стимулов и частота заполнения, играет вспомогательную роль, обеспечивая отсутствие нежелательных эффектов в зоне расположения электродов. Регулировка параметров позволяет использовать большие интенсивности стимулирующего тока, что необходимо для усиления эффективности лечеб­ного воздействия. Для данной группы целесообразно введение автома­тического управления параметрами воздействия в зависимости от харак­теристик биологического звена БТС.

Рассмотрим структурную реализацию алгоритмов автоматической установки параметров стимулов в БТС противоболевой электронейро­стимуляции.

Автоматическое управление частотой заполнения стимула при чрескожном воздействии можно осуществить на основе предварительного измерения частотных свойств биологических тканей в зоне стимуляции, определения значения граничной частоты адекватного диапазона спект­ральных составляющих стимула и формирования несущей частоты сти­мула в этом диапазоне. Определение граничных частот спектра стимула можно провести с помощью измерения сдвига фаз между стимулирую­щим током и напряжением. Фазовая характеристика биологических тка­ней, имеет экстре­мум, приходящийся на минимум активных потерь тока в тканях, т.е. находящийся в диапазоне адекватных частот спектра стимула.

Структурная схема управления частотой заполнения стимула, осно­ванная на анализе фазовой характеристики тканей, показана на рис. 3. Тактовый генератор 1 вырабатывает короткие импульсы U1 , за­пускающие генератор пилообразного напряжения 2. Линейно возрастаю­щее напряжение U2 вызывает плановое изменение частоты генератора 3, сигнал с которого поступает на формирователь стимула 4, вырабаты­вающий импульсное напряжение U3 . Через усилитель стимула 5 и из­меритель тока стимуляции 6 воздействие прикладывается к электродам 7, расположенным на коже пациента. Фазометр 8 осу­ществляет формирование на­пряжения U4 , пропорциональ­ного сдвигу фаз между напря­жением и током стимуляции в течение действия стимула. В момент, когда напряжение U4 проходит через максимум, схема выделения максимума 9 генерирует короткий импульс напряжения U5 . Этот сигнал воздействует на генератор пи­лообразного напряжения 2, вызывая остановку изменения напряжения на его выходе и запоминание этого напряже­ния до следующего такта ра­боты.

Рисунок 3 – Структурная схема (а) и временные диаграммы (б) автоматического управления частотой заполнения стимула.


Процесс изменения частоты генератора заполнения 3 прекращается, поскольку фазовый сдвиг достигает максимального зна­чения, соответствующего области адекватных частот заполнения. Поиск частоты генератора заполнения будет производиться в начале каждого такта работы, длительность которого определяется периодом напряжения U1 . При изменении параметров биологической ткани будет изменяться фазовое соотношение между стимулирующим током и напряжением и устанавливаться новая частота заполнения, соответствующая области адекватных частот.

Определение граничной частоты спектра стимула и формирование адекватного сигнала стимуляции можно произвести методом избиратель­ной фильтрации. Структурная схема, реализующая данный метод, показана на рис4.


Рисунок 4 – Структурная схема реализации метода избирательной фильтрации

Формирование адекватного стимула осуществляется путем пропуска­ния широкополосного сигнала генератора 1, имеющего равномерный спектр в области возможных несущих, частот стимула, через перестраивае­мый избирательный фильтр 2. Колоколообразная частотная характеристика фильтра обеспечивает на выходе формирование амплитудно-модулированного сигнала. Несущая частота этого колебания определяется частотой настройки фильтра 2, а импульсная периодичность — периодичностью сигналов генератора 1. Полученный на выходе фильтра 2 сигнал через коммутатор 3, усилитель 4 и измерительную схему 5 прикладывается к электродам 6, расположенным на коже пациента. Частота настройки фильтра 2 устанавливается следующим образом. Тактовый генератор 7 с определенной периодичностью переводит схему в режим управления. При этом коммутатор 3 подключает к цепи электродов широкополосный сигнал от генератора 1. Отклик биологической ткани на широкополосный сигнал через измерительную схему 5 подается на вход узкополосного фильтра 10. С помощью тактового генератора 7 осуществляется периодическое скани­рование частоты его настройки. Напряжение на выходе фильтра 10 уси­ливается с помощью усилителя 9 и поступает на формирователь управля­ющего напряжения 8, который запоминает значение напряжения скани­рования фильтра 10 в момент максимального значения производной напряжения на выходе усилителя 9. Запомненное напряжение с выхода формирователя 8 подается на управляющий вход фильтра 2 и определяет частоту его настройки и, тем самым, несущую частоту стимула. Таким образом, несущая частота стимула оказывается связанной с участком наибольшей крутизны частотной характеристики биологической ткани, определяющей положение граничной частоты спектра адекватного сти­мула. Алгоритм установки длительности стимулов основан на зависи­мости длительности адекватного стимула от величины времени релак­сации тока в тканях, окружающих электроды.

Формирование адекватной длительности стимулов, при которой до­стигается минимизация пороговой энергии стимуляции и поддержание этих условий в процессе длительного воздействия, требует контроля ве­личины времени релаксации тока в зоне расположения электродов и вве­дения управления в формирователь длительности стимулов. Структурная схема, реализующая данный принцип управления длитель­ностью стимула, показана на рис. 5. Задающий генератор I определяет частоту следования стимулов, длительность которых задается в управля­емом формирователе 2, связанном через коммутатор 3 и усилитель 4 с электродами 5, расположенными на участке биологической ткани. Сиг­нал тактового генератора 6, синхронизированный с импульсами стиму­ляции, переводит устройство в режим управления. В этом режиме на электроды 5 подается сигнал с формирователя измерительного импульса 7, представляющий собой импульс с прямоугольной огибающей. Возникаю­щее на электродах под действием измерительного импульса экспоненци­ально возрастающее напряжение поступает на измеритель переходного про­цесса 8, который формирует временной интервал, соответствующий вре­мени нарастания входного напряжения, т.е. контролируемой величине времени релаксации тока. Для сохранения измеренного значения на весь период управления служит запоминающее устройство 9, сбрасываемое в начале каждого такта управления сигналом тактового генератора 6. Выход запоминающего устройства 9 через устройство управления 10 связан с управляющим входом формирователя длительности стимула 2. Таким об­разом, длительность стимулов в режиме стимуляции устанавливается в соответствии с измеренным значением времени релаксации тока в тканях в предыдущем периоде управления. Период управления выбирается до­статочно большим по сравнению с длительностью измерительного импульса и периода стимуляции. Для отслеживания изменений релаксационных свойств ткани в процессе стимуляции достаточно выбрать период управле­ния равным 2...4 с, а дли­тельность измерительного импульса 1,5...2,0 мс. До­стоинством данной схемы является использование одной пары электродов для стимуляции и кон­троля параметров, что уп­рощает построение тех­нического звена БТС.

Рисунок 5 – Структурная схема автоматического уп­равления длительностью стимула

Рассмотренные алгоритмы автоматического управления параметра­ми противоболевой электронейростимуляции позволяют сохранить аде­кватность воздействия в условиях изменения свойств биологических тка­ней, окружающих электроды. Следовательно, БТС, функционирующая по данным алгоритмам, приобретает свойство адаптивности, позволяю­щее сохранить эффективность воздействия при длительной стимуляции. В то же время автоматическая установка параметров стимула предотвра­щает адаптацию возбуждаемых нервных структур за счет периодического изменения параметров стимула, обусловленного изменением импедансных свойств тканей, в зоне расположения электродов. Преодоление адаптации возбуждаемых структур позволяет добиться стойкого анальгетического эффекта при длительном обезболивании.


ЛИТЕРАТУРА

1. Системы комплексной электромагнитотерапии: Учебное пособие для вузов/ Под ред А.М. Беркутова, В.И.Жулева, Г.А. Кураева, Е.М. Прошина. – М.: Лаборатория Базовых знаний, 2000г. – 376с. 2000

2. Электронная аппаратура для стимуляции органов и тканей /Под ред Р.И.Утямышева и М.Враны - М.: Энергоатомиздат, 2003.384с.. 2003

3. Ливенсон А.Р. Электромедицинская аппаратура. :[Учебн. пособие] - Мн.: Медицина, 2001. - 344с. 2001

4. Катона З. Электроника в медицине: Пер. с венг. / Под ред. Н.К.Розмахина - Мн.: Медицина 2002. - 140с. 2002

К-во Просмотров: 190
Бесплатно скачать Реферат: Классификация лечебных физических факторов. Алгоритм функционирования и структурная компоновка аппаратного комплекса