Реферат: Кластерный анализ и метод горной кластеризации
На втором шаге алгоритма рассчитывается потенциал центров кластеров по следующей формуле:
, ,
где - потенциальный центр h-го кластера;
- положительная константа
- расстояние между потенциальным центром кластера () и объектом кластеризации (). В евклидовом пространстве это расстояние рассчитывается по формуле:
.
В случае, когда объекты кластеризации заданы двумя признаками (n=2), графическое изображение распределения потенциала будет представлять собой поверхность, напоминающую горный рельеф. Отсюда и название - горный метод кластеризации.
На третьем шаге алгоритма в качестве центров кластеров выбирают координаты "горных" вершин. Для этого, центром первого кластера назначают точку с наибольшим потенциалом. Обычно, наивысшая вершина окружена несколькими достаточно высокими пиками. Поэтому назначение центром следующего кластера точки с максимальным потенциалом среди оставшихся вершин привело бы к выделению большого числа близко расположенных центров кластеров. Чтобы выбрать следующий центр кластера необходимо вначале исключить влияние только что найденного кластера. Для этого значения потенциала для оставшихся возможных центров кластеров пересчитывается следующим образом: от текущих значений потенциала вычитают вклад центра только что найденного кластера (поэтому кластеризацию по этому методу иногда называют субтрактивной). Перерасчет потенциала происходит по формуле:
,
где - потенциал на 1-й итерации;
- потенциал на 2-й итерации;
- центр первого найденного кластера:
;
- положительная константа.
Центр второго кластера определяется по максимальному значению обновленного потенциала:
.
Затем снова пересчитывается значение потенциалов:
.
Итерационная процедура пересчета потенциалов и выделения центров кластеров продолжается до тех пор, пока максимальное значение потенциала превышает некоторый порог.
5 Пример использования метода на реальных данных
Для реализации метода горной кластеризации на реальных данных по показателям 3(Atomic-radius-emp), 7(Electron-affinity) и 14(Electronegativity-AllredRochow) автором был использован математический пакет Matlab версии 7.10.0(R2010a), в который были импортированы данные из таблицы MSExcel с помощью надстройки SpreadsheetLinkEX 3.1.1. Вызов встроенной в Matlab функции кластеризации subclust() и создания фигуры для отображения получившихся результатов записаны в скрипте Cluster.m:
Результаты:
В командном окне Matlab выводятся координаты трех кластеров и их радиусы:
centers =
155.0000 41.1000 1.2200
135.0000 118.4000 1.7500
220.0000 48.4000 0.9100
sigmas =
27.5772 37.0170 0.5834
Заключение
В итоге анализа методом горной кластеризации по параметрам 3, 7 и 14 исходных данных выделились три кластера, дисперсия элементов довольно высока. Таким образом, можно выявить три группы элементов, имеющих одни и те же свойства.
Используемая литература