Реферат: Кодеры речи
Рисунок 1.3
На приемном конце значения сообщения восстанавливаются путем добавления принятого сигнала ошибки предсказания
к предсказываемому значению
(рис. 1.3,б).
В системе с дифференциальной импульсно-кодовой модуляцией (ДИКМ) отсчетные значения ошибки предсказания подвергаются квантованию с переходом к значениям
аналогично тому, как это делается при использовании обычной ИКМ, однако при существенно меньшем числе уровней квантования. Таким образом, при одинаковом качестве передачи речи метод ДИКМ позволяет использовать меньшее число разрядов n в кодовых комбинациях по сравнению с ИКМ. При этом существует большое число различных вариантов реализации метода ДИКМ, наиболее типичный из которых представлен на рис. 1.4.
Рисунок 1.4
При этом имеют место соотношения:
(1.3)
Классификационными признаками кодеров ДИКМ считаются наличие блока линейного предсказания авторегрессионных последовательностей (предсказателя) и использование многоуровневого (больше двух уровней) квантователя. Блок линейного предсказания может состоять из двух частей — долговременного и кратковременного предсказателей. В канал передается разность истинного и предсказанного значений сигнала (сигнал-остаток, он же – погрешность предсказания). Системы с ДИКМ обеспечивают такое качество восстановления сигнала, которое сопоставимо с предоставляемым ИКМ, и на порядок более высокую помехоустойчивость.
Эффективность метода ДИКМ может быть повышена путем пере хода к адаптивной дифференциальной импульсно-кодовой модуляции АДИКМ.
Адаптивная дифференциальная импульсно-кодовая модуляция (ADPCM — Adapti ve Differencial Pulse Code Modulation). Рекомендации G.721 и G.726
ADPCM – один из наиболее общепринятых и давно используемых алгоритмов сжатия речи, который регламентируется стандартом G.726, был принят в 1984 г. Этот алгоритм дает практически такое же качество воспроизведения речи, как и РСМ, однако для передачи информации при его использовании требуется всего 32 кбит/с. Метод основан на том, что в аналоговом сигнале, передающем речь, невозможны резкие скачки интенсивности. Поэтому, если кодировать не саму амплитуду сигнала, а ее изменение по сравнению с предыдущим значением, то можно обойтись меньшим числом разрядов. В ADPCM изменение уровня сигнала кодируется четырехразрядным числом, при этом частота измерения амплитуды сигнала сохраняется неизменной.
Все методы кодирования, основанные на определенных предположениях о форме сигнала, плохо работают в ситуации, когда сигнал может передаваться с резкими скачками амплитуды. Именно такой вид имеет аудиосигнал, генерируемый модемам или факсимильными аппаратами. Современные системы обмена информацией, поддерживающие цифровые линии связи, умеют распознавать факсимильный обмен и передают соответствующие сигналы непосредственно в цифровом виде, не преобразуя их в аудиосигнал.
Нелинейный 15-уровневый адаптивный квантователь используется для квантования разностного сигнала . Перед квантованием сигнал
логарифмируется по основанию 2 и масштабируются посредством коэффициента
, который вычисляется с помощью блока адаптации масштабного коэффициента.
Для определения квантованного уровня используются четыре двоичных символа (три для амплитуды и один для знака). Четырехбитовый выход квантователя
образует выходной цифровой сигнал со скоростью 32 кбит/с, который одновременно подается на инверсный адаптивный квантователь и блок управления скоростью адаптации масштабного коэффициента квантователя.
Квантованная версия разностного сигнала формируется путем масштабирования с использованием специальной величины
, выделяемой из нормализованной характеристики квантователя, и дальнейшей трансформации результата из логарифмического представления.
Блок адаптации масштабного коэффициента квантователя вычисляет — масштабный коэффициент для квантователя и инверсного квантователя. На его входы подаются четырехбитовые выходные сигналы квантователя
и параметр управления скоростью адаптации
.
Основной принцип, реализуемый при масштабировании, заключается в бимодальной адаптации:
– быстрой – для сигналов (например, речевых), которые дают разностные сигналы с большими флуктуациями;
–медленной – для сигналов (например, данных в диапазоне тональных частот, тонов), которые дают разностные сигналы с малыми флуктуациями.
Управление скоростью адаптации производится с помощью комбинации быстрого и медленного масштабных коэффициентов.
Быстрый (нефиксированный) масштабный коэффициент вычисляется рекурсивно в логарифмическом представлении с основанием 2 из результирующего логарифмического масштабного коэффициента
:
(1.6)
Как правило, лежит в пределах
. Дискретная функция
определяется табличным образом. Множитель (1 – 2-5 ) вводит ограниченную память в процесс адаптации таким образом, что состояния кодера и декодера сходятся при ошибках передачи.
Медленный (фиксированный) масштабный коэффициент получается из
с помощью операции фильтрации нижних частот:
(1.7)
Затем быстрый и медленный масштабные коэффициенты объединяются для получения результирующего масштабного коэффициента:
(1.8)
где .
Управление скоростью адаптации. Предполагается, что управляющий параметр может принимать значения в диапазоне [0, 1]. Для речевых сигналов он стремится к единице, Для сигналов, данных в диапазоне тональных частот и одночастотных сигналов он стремится к нулю. Величина коэффициента определяется мерой скорости изменения величины разностного сигнала.
Адаптивный предсказатель и калькулятор восстановленного сигнала. Первоначальная функция адаптивного предсказателя заключается в вычислении оценки разностного сигнала
. Используются две структуры адаптивного предсказателя – каскад первого порядка, моделирующий нули, и каскад второго порядка, моделирующий полюсы во входном сигнале.