Реферат: Конструкції пластинчастих теплообмінних апаратів
Пластинчасті теплообмінні апарати можна використовувати для теплової обробки рідин з кінематичною в’язкістю від 0,2ּ10-6 до 6ּ104 м2 /с.
3 Конструкції розбірних та напіврозбірних пластинчастихтеплообмінних апаратів
В теплопередавальних пластинах розбірних апаратів по їх контуру передбачено паз, у якому закріплені ущільнювальні прокладки з гум спеціальних теплостійких марок. Пластини установлюють на раму теплообмінника, яка складається з кількох штанг, рухомих та нерухомих плит із затискними гвинтами. Нерухома плита звичайно закріплена до полу, рухома – на ролику підвішена до верхньої штанги та може рухатися по ній. На плитах розміщуються штуцери для приєднання технологічних трубопроводів.
При однопакетному компонуванні пластин допускається установка усіх чотирьох штуцерів на нерухомій плиті, що полегшує експлуатацію апарата.
На апараті може бути установлено більше чотирьох штуцерів, наприклад, для відведення несконденсованих газів, зливу продуктів тощо.
Розбірні теплообмінні апарати установлюють на консольній рамі (виповнення 1), на двохопорній рамі (виповнення 2), на трьохопорній рамі або рамі з нерухомою опорою усередині (виповнення 3).
Основна деталь розбірного пластинчастого теплообмінного апарата – гофрована теплопередавальна пластина.
В каналах апарата, які складаються з пластин, передбачені точки опори гофр, що дозволяє витримувати в апараті різницю тисків з обох боків пластини, а також підвищений внутрішній тиск у каналах при збереженні герметичності.
Група платин, що утворює систему каналів, у яких робоче середовище рухається лише в одному напряму, складає пакет.
Один або кілька пакетів, стиснутих між нерухомою та рухомою плитами, створюють секцію. При складанні пакету пластини повернуті одна відносно другої на 180°, причому усі гумові прокладки розташовуються з боку рухомої плити. У кутах пластин розміщуються отвори для проходження робочих середовищ.
У проміжних і кінцевих пластинах може бути одно, два або три отвори, кількість яких визначають відповідно схемі компоновки пластин в теплообміннику.
Кожна пластина в працюючому апараті омивається двома середовищами: з одного боку – охолоджуваним, з другого – нагрівним. Середовища, які протікають поперек гофрів, турбулізуються, що сприяє інтенсифікації теплообміну. Простірна схема руху робочих середовищ в однопакетному пластинчастому теплообмінному апараті приведена на рисунку 1.
Рисунок 1 – Простірна схема руху робочих середовищ в однопакетному пластинчастому теплообмінному апараті
При формах та розмірах гофр, прийнятих для промислових пластинчастих теплообмінних апаратів, вже при Re>50–200 стабілізація потоку порушується, потік становиться турбулентним. Порушення стабілізації граничного підшару сприяє підвищенню інтенсивності тепловіддачі. При роботі на середовищах типу вода-вода коефіцієнт теплопередачі складає 3000–5000 Вт/(м2 ·К).
При компонуванні пластинчастих розбірних теплообмінних апаратів за схемою, визначеною розрахунком, можна отримати оптимальну кількість каналів в пакеті та пакетів в секції для кожного робочого середовища.
Компоновку теплообмінного апарата можна змінити відповідно до конкретної кількості кожного з робочих середовищ, напору та заданому тепловому режиму, завдяки чому характеристику апарата можна наблизити до оптимальної та підвищити коефіцієнт теплопередачі.
Компоновку пластин в апараті та напрям руху робочих середовищ зображають на схемах, що складаються відповідно тепловим та гідродинамічним розрахункам. Схему найпростішого пластинчастого теплообмінного апарата (рисунок 1), який складається з п’яти пластин, що формують по два паралельних канали для кожного робочого середовища, умовно представляють дріб’ю
Сх
Теплообмінні апарати промислового призначення часто мають більш складні схеми компоновки каналів та теплопередавальних поверхонь.
На рисунку 2 наведена схема компоновки пластин у два симетричних пакети для охолоджуваного та нагрівного робочих середовищ, тобто при однакової кількості каналів у кожному пакеті для кожного робочого середовища. Для кожного робочого середовища можна застосувати різні варіанти компоновки пластин.
Робоче середовище через вхідний штуцер поступає у подовжній колектор, створений кутовими отворами та прокладками стиснутих у пакет пластин, і рухається по ньому до пластини з непросіченим місцем для кутового отвору З колектора, далі робоче середовище проходить у міжпластинчасті канали через ділянки, на яких відсутні ущільнювальні прокладки. У кожному колекторі ці ділянки розташовані через одну пластину, завдяки чому створюється система гарячих та холодних каналів. Після проходження міжпластинчастих каналів робоче середовище попадає у протилежний колектор і виводиться з апарата або проходить у наступний пакет.
Рисунок 2 – Схема компоновки пластин у два симетричних пакети
І – 1–9 – нумерація каналів; І І –1–9 –нумерація пластин; а – отвір з ущільнювальним гумовим кільцем; b – непросічене місце для отвору без ущільнювального гумового кільця; с – отвір без ущільнювального гумового кільця; d – непросічене місце для отвору з ущільнювальним гумовим кільцем
При заданій витраті рідини, яка проходить через апарат, можна розрахувати швидкість руху її по міжпластинчастим каналам. Оптимальна швидкість досягається за рахунок змінення числа каналів у пакеті.
Пакет завжди обмежено пластиною, яка має неповну кількість кутових отворів. Такі пластини називають граничними.
Робочі середовища, як правило, рухаються в апараті протитоком.
Якщо витрата одного робочого середовища значно відрізняється від другого, то для створення однакових швидкостей та гідравлічних опорів збоку руху кожного середовища та забезпечення оптимальних коефіцієнтів тепловіддачі, застосовують несиметричні схеми компоновки пластин (рисунок 3). У цих схемах кількість каналів в пакетах для кожного з робочих середовищ неоднакова.