Реферат: Линейные блоковые коды

где Ir - единичная матрица; - прямоугольная матрица в транспонированном виде матрицы Rk,r из порождающей матрицы.

Пример. Проверочная матрица (5,3) - кода


Основные свойства линейных кодов

1. Произведение любого кодового слова на транспонированную проверочную матрицу дает нулевой вектор размерности (n-k)

Пример. для кода (5,3)

2. Произведение некоторого кодового слова, т.е. с ошибкой, на транспонированную проверочную матрицу называется синдромом и обозначается Si (x)

3. Между порождающей и проверочной матрицами в систематическом виде существует однозначное соответствие, а именно:

4. Кодовое расстояние d0 (n,k) - кода равно минимальному числу линейно зависимых столбцов проверочной матрицы

Пример.

для кода (5,3):

для кода (5,2):

5. Произведение информационного слова на порождающую матрицу дает кодовое слово кода

Пример. для кода (5,3)

6. Два кода называются эквивалентными, если их порождающие матрицы отличаются перестановкой координат, т.е. порождающие матрицы получаются одна за другой перестановкой столбцов и элементарных операций над строками.

7. Кодовое расстояние любого линейного (n,k) - кода удовлетворяет неравенству (граница Сингтона). Линейный (n,k) - код, удовлетворяющий равенству, называется кодом с максимальным расстоянием.

Стандартное расположение группового кода

Стандартное расположение группового кода представляет разложение множества всех возможных n-элементных слов, представляющих собой группу, на смежные классы по подгруппе из 2k кодовых слов, составляющих (n,k)-код (см. таблицу 2).

Таблица 2
 

Образующие или лидеры смежных классов выбираются таким образом, чтобы в их состав вошли наиболее вероятные образцы ошибок в кодовом слове, т.е. образцы ошибок с наименьшим весом.

Пример. Код (5,3) имеет матрицы

и

а стандартное расположение имеет вид,

00000 10111 01101 11010
00001 10110 01100 11011
00010 10101 01111 11000
00100 10011 01001 11110
01000 11111 00101 10010
10000 00111 11101 01010
00011 10100 01110 11001
10001 00110 11100 01011

Этот код имеет d0 =3. Он гарантирует исправление одиночных ошибок, конфигурация которых дана в первом столбце.

Процедура исправления ошибок следующая. Принятое кодовое слово анализируют и определяют, в каком столбце оно находится, а затем в качестве исправленного кодового слова берут слово, находящееся в верхней строке.

К-во Просмотров: 254
Бесплатно скачать Реферат: Линейные блоковые коды